Skip to main content Accessibility help

Performance Degradation Due to Nonlocal Heating Effects in Resistive ReRAM Memory Arrays

  • M. Al-Mamun (a1) and M. Orlowski (a1)


Frequent switching of resistive memory cell may lead to a local accumulation of Joules heat in the device. Since the ReRAM cells are arranged in crossbar arrays with the two electrodes running perpendicular to each other, the heat generated in one device spreads via common electrode metal lines to the neighboring cells causing their performance degradation. Also cells that do not share any of the two electrodes (e.g. the diagonal array cells) with the hot device may also degrade provided the intermediate cells are set to an on-state establishing thus a continuous thermal conduction path between the heated and the probed device. It is found that the heat conduction along the active Cu electrode is more pronounced than that along the inert Pt electrode. Devices with Rh inert electrode performed better than those with Pt electrode due to better heat conductivity properties of Rh vs Pt. The heat dissipation is also found worse for a heated device with narrow and thin lines causing, however less degradation of more distant neighbor cells than for wide and thick metal lines. Finally, there is a trade-off between dissipating the heat quickly form the heated device to increase its maximum switching cycles and the heat exposure of the neighboring devices.


Corresponding author


Hide All
1.Valov, I., Waser, R., Jameson, J. R., and Kozicki, M. N., Nanotechnol., 22, 254003, 2011.10.1088/0957-4484/22/25/254003
2.Kang, Y., Liu, T., Potnis, T., and Orlowski, M., ECS Solid State Letters, vol. 2(7) Q54Q57, 2013 10.1149/2.004307ssl
3.Liu, T., Verma, M., Kang, Y., and Orlowski, M. K., Appl. Phys. Lett., vol. 101(7), p. 073510, 2012.10.1063/1.4746276
4.Celano, U., Goux, L., Degraeve, R., Fantini, A., Richard, O., Bender, H., Jurczak, M., Vandervorst, W., Nano Lett. 15, 7970–7875, 2015 10.1021/acs.nanolett.5b03078
5.Hubbard, W., Kerelsky, A., Jasmin, G., White, E., Lodico, J., Meclenburg, M., Regan, B., Naono Lett. 15, 39833987, 2015 10.1021/acs.nanolett.5b00901
6.Yu, S. and Wong, H.P.S, IEEE Trans. El. Dev. 58, 1352, 2011
7.Liu, Q., Sun, J., Lv, H., Long, S., Yin, K., Wang, N., li, Y., Sun, L., Liu, M., Adv. Mater. 24, 18441849, 2012 10.1002/adma.201104104
8.Dirkmann, S., Ziegler, M., Hansen, M., Kohlstedt, H., Trieschmann, J., Mussenbrock, T., J. Appl. Phys. 118, 214501, 2015 10.1063/1.4936107
9.Yang, Y., Gao, P., Li, L., Pan, X., Tappertzhofen, S., Choi, S., Waser, R., Valov, I., Lu, W., Nat. Comm. 5, 4232, 2014 10.1038/ncomms5232
10.Yang, Y., Gao, P., Gaba, S., Chang, T., Pan, X., Lu, W., Nat. Comm. 3, 732, 2012 10.1038/ncomms1737
11.Ghosh, G., Orlowski, M., IEEE Trans. El. Dev. vol. 62(9) p. 2850–6, 2015
12.Ghosh, G., Orlowski, M., Curr. Appl. Phys. vol. 15, 11241129, 2015
13.Sun, P., Li, L., Lu, ND, Li, YT, Wang, M., Xie, HW, Liu, S., Liu, M., J. Comp. Electr., vol. 13(2), p.432438, 2014 10.1007/s10825-013-0552-x
14.Liu, T., Kang, Y., El-Helw, S., Potnis, T., and Orlowski, M., Jap. Jour. Appl. Phys. 52, 084202, 2013.10.7567/JJAP.52.084202
15.Mickel, P., Lohn, A., Marinella, M., Appl. Phys. Lett. 105, 053503, 2014 10.1063/1.4892471
16.Mickel, P., Lohn, A., James, C., Marinella, M., Adv. Mat. 26, 44864490, 2014 10.1002/adma.201306182
17.Uenema, M., Ishikawa, Y., Uraoka, Y., Appl. Phys. Lett. 107, 073503, 2015 10.1063/1.4928661
18.Sato, Y., Kinoshita, K., Aoki, M., Sugiyama, Y., Appl. Phys. Lett. 90, 033503, 2017 10.1063/1.2431792
19.Al Mamun, M. and Orlowski, M., (2019) to be published



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed