Skip to main content Accessibility help

Non-vacuum Preparation of wse2 Thin Films via the Selenization of Hydrated Tungsten Oxide Prepared using Chemical Solution Methods

  • Christopher L. Exstrom (a1), Scott A. Darveau (a1), Megan E. Falconer (a1), Jessica R. Blum (a1), Whitney M. Colling (a1) and Natale J. Ianno (a2)...


It is known that tungsten oxide may be reacted with selenium sources to form WSe2 but literature reports include processing steps that involve high temperatures, reducing atmospheres, and/or oxidative pre-treatments of tungsten oxide. In this work, we report a non-vacuum process for the fabrication of compositionally high quality WSe2 thin films via the selenization of tungsten oxide under milder conditions. Tungsten source materials were various hydrated WO3 and WO2.9 compounds that were prepared using chemical solution techniques. Resulting films were selenized using a two-stage heating profile (250 °C for 15 minutes and 550 °C for 30 minutes) under a static argon atmosphere. Effects of the starting tungsten oxide phase on WSe2 formation after single and double selenization cycles were investigated using Raman spectroscopy and X-ray diffraction (XRD). After two selenization cycles, hydrated WO3 was converted to (002)-oriented WSe2 that exhibits well-resolved peaks for E12g and A1g phonon modes. Only a single selenization cycle was required to convert amorphous WO2.9 to WSe2. All selenizations in this work were achieved in non-reducing atmospheres and at lower temperatures and shorter times than any non-laser-assisted processes reported for WO3-to-WSe2 conversions.


Corresponding author


Hide All
1.Wadia, C, Alivastos, A.P., and Kammen, D.M., Environ. Sci. Technol. 43, 2072 (2009).
2.Jäger-Waldau, A., Lux-Steiner, M. Ch., and Bucher, E., Solid State Phen. 37-38, 479 (1994).
3.Jäger-Waldau, A., and Bucher, E., Thin Solid Films 200, 157 (1991).
4.Vogt, M., Lux-Steiner, M. Ch., Dolatzoglou, Ρ., and Bucher, E., presented at the 1988 Photovoltaic Solar Energy Conference, Florence, Italy (unpublished).
5.Ma, Q., Kyureghian, H., Banninga, J.D., and Ianno, N.J., Mater. Res. Soc. Symp. Proc. 1670, San Francisco, CA, 2014, mrss14-1670-e01-02 doi:10.1557/opl.2014.739.
6.Pouzet, J., Bernede, J. C., Khellil, A., Essaidi, H., Benhida, S., Thin Solid Films 208, 259 (1992).
7.Chen, Y.-Z., Medina, H., Su, T.-Y., Li, J.-G., Cheng, K.-Y., Chiu, P.-W., and Chueh, Y.-L., ACS Nano 9, 4346 (2015)
8.Campbell, P.M., Tarasov, A., Joiner, C.A., Tsai, M.-Y., Pavlidis, G., Graham, S., Ready, W.J., and Vogel, E.M., Nanoscale 8, 2268 (2006).
9.Huang, J.-K., Pu, J., Hsu, C.-L., Chiu, M.-H., Juang, Z.-Y., Chang, Y.-H., Chang, W.-H., Iwasa, Y., Takenobu, T., and Li, L.-J., ACS Nano 8, 923 (2014).
10.Xu, K., Wang, F., Wang, Z, Zhan, X., Wang, Q., Cheng, Z., Safdar, M., and He, J., ACS Nano 8, 8468 (2014).
11.Browning, P., Eichfeld, S., Zhang, K., Hossain, L., Lin, Y.-C., Wang, K., Lu, N., Waite, A.R., Voevodin, A.A., Kim, M., and Robinson, J., 2D Mater. 2, 014003 (2015)
12.Chen, J., Zhou, W., Tang, W., Tian, B., Zhao, X., Xu, H., Liu, Y., Geng, D., Tan, S.J.R., Fu, W., and Loh, K.P., Chem. Mater. 28, 7194 (2016).
13.Ullah, F., Sim, Y., Le, C.T., Seong, M.-J., Jang, J.I., Rhim, S.H., Khac, B.C.T., Chung, K.-H., Park, K., Lee, Y., Kim, K., Jeong, H.Y., and Kim, Y.S., ACS Nano 11, 8822 (2017).
14.Lee, Y., Jeong, H., Park, Y.-S., Han, S., Noh, J., and Lee, J.S., Appl. Surf. Sci. 432, 170 (2018).
15.Salitra, G., Hodes, G., Klein, E., and Tenne, R., Thin Solid Films 245, 180 (1994).
16.Kim, H., Yun, S.J., Park, J.C., Park, M.H., Park, J.-H., Kim, K.K., and Lee, Y.H., Small 11, 2192 (2015).
17.Najdoski, M.Z. and Todorovski, T., Mater. Chem. Phys. 104, 483 (2007).
18.Markelonis, A.R., Wang, J.S., Ullrich, B., Wai, C.M., Brown, G.J., Appl. Nanosci. 5, 457 (2015).
19.Cheng, W., Baudrin, E., Dunn, B., and Zink, J., J. Mater. Chem. 11, 92 (2001).
20.Kharade, R.R., Mane, S.R., Mane, R.M., Patil, P.S., Bhosale, P.N., J Sol-Gel Sci. Technol. 56, 177 (2010).
21.Nayak, A.K., Lee, S., Choi, Y.I., Yoon, H.J., Sohn, Y., and Pradhan, D., ACS Sustainable Chem. Eng. 5, 2741 (2017).
22.JCPDS card no. 351001.
23.Karuppasamy, A., Appl. Surf. Sci. 282, 77 (2013).
24.Li, Z.-F., Zhang, B.-S., Z. Kristallographie 223, 191 (2008).
25.Patterson, A.L., Phys. Rev. 56, 978 (1939).
26.Klejnot, O.J., Inorg. Chem. 4, 1668 (1965).
27.Tonndorf, P., Schmidt, R., Böttger, P., Zhang, X., Börner, J., Liebig, A., Albrecht, M., Kloc, C., Gordau, O., Zahn, D.R.T., de Vasconcellos, S.M., Bratschitsch, R., Optics Express 21, 4908 (2013).
28.Late, D.J., Shirodkar, S.N., Waghmare, U.V., Dravid, V.P., and Rao, C.N.R., ChemPhysChem 15, 1592 (2014).
29.Schutte, W.J., de Boer, J.L., Jellinek, F., J. Solid State Chem. 70, 207 (1987).
30.Sloan, J., Hutchison, J.L., Tenne, R., Feldman, Y., Tsirlina, T., and Homyonfer, M., J. Solid State Chem. 144, 100 (1999).



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed