Skip to main content Accessibility help
×
Home

Nanocomposites of Hydrophobized Cellulose Nanocrystals and Polypropylene

  • Blake R. Teipel (a1), Ryan J. Vano (a2), Bryan S. Zahner (a2), Elisa M. Teipel (a2), I-Cheng Chen (a3) and Mustafa Akbulut (a1) (a3)...

Abstract

Cellulose nanocrystals (CNCs) are high-strength sustainable nanomaterials, the incorporation of which to a host polymer matrix can potentially lead to nanocomposites with superior mechanical properties. However, the mismatch in surface energy of CNCs and common structural polymers is a challenge that needs to be overcome to prevent the aggregation of CNCs and ensure the robust integration of CNCs into a polymer matrix. Herein, we report an approach involving the functionalization of CNCs with maleated-anhydride polypropylene (MAPP) through diethylenetriamine (DETA) linkers to significantly enhance the compatibility between CNCs and polypropylene. Polypropylene/modified CNC nanocomposites displayed 74% and 76% increase in elastic modulus in comparison to neat polypropylene and polypropylene/untreated CNC nanocomposites, respectively. The tensile strength was also higher for nanocomposites with modified CNC than neat polypropylene, as well as nanocomposites with untreated CNCs. The tensile strength at 5.5% strain of polypropylene/modified CNC nanocomposites was 32% and 28% larger that of polypropylene and polypropylene/untreated CNC nanocomposites, respectively. Finally, such CNC-based nanocomposites have a lower density than many competitive systems resulting in opportunities to propagate this environmentally-responsible technology to nanocomposites used in additive manufacturing, automotive applications, construction materials and consumer products.

Copyright

Corresponding author

*Phone: 979-847-8766. Fax: 979-845-6446. E-mail: makbulut@tamu.edu

References

Hide All
(1) Habibi, Y.; Lucia, L. A.; Rojas, O. J.: Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chemical Reviews 2010, 110, 34793500.
(2) Padalkar, S.; Capadona, J. R.; Rowan, S. J.; Weder, C.; Won, Y.-H.; Stanciu, L. A.; Moon, R. J.: Natural Biopolymers: Novel Templates for the Synthesis of Nanostructures. Langmuir 2010, 26, 84978502.
(3) Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J.: Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 39413994.
(4) Alamri, H.; Low, I. M.: Characterization of epoxy hybrid composites filled with cellulose fibers and nano-SiC. Journal of Applied Polymer Science 2012, 126, E221E231.
(5) Cross, L., Schueneman, G., Mintz, E.: Polymer Matrix Nanocomposites via Forest Derived Nanomaterials. In TechConnect World Summit, Expo, and Showcase; U.S. Forest Service, 2012.
(6) Eichhorn, S.; Dufresne, A.; Aranguren, M.; Marcovich, N.; Capadona, J.; Rowan, S.; Weder, C.; Thielemans, W.; Roman, M.; Renneckar, S.; Gindl, W.; Veigel, S.; Keckes, J.; Yano, H.; Abe, K.; Nogi, M.; Nakagaito, A.; Mangalam, A.; Simonsen, J.; Benight, A.; Bismarck, A.; Berglund, L.; Peijs, T.: Review: current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science 2010, 45, 133.
(7) Pullawan, T.; Wilkinson, A. N.; Eichhorn, S. J.: Influence of Magnetic Field Alignment of Cellulose Whiskers on the Mechanics of All-Cellulose Nanocomposites. Biomacromolecules 2012, 13, 25282536.
(8) Kloser, E.; Gray, D. G.: Surface Grafting of Cellulose Nanocrystals with Poly(ethylene oxide) in Aqueous Media. Langmuir 2010, 26, 1345013456.
(9) Elazzouzi-Hafraoui, S.; Nishiyama, Y.; Putaux, J.-L.; Heux, L.; Dubreuil, F.; Rochas, C.: The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose. Biomacromolecules 2007, 9, 5765.
(10) Teipel, B. R.; Grunlan, J.: Synergy in Epoxy Nanocomposites with Cellulose Nanocrystals and Boehmite. Green Materials 2014.
(11) Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A.: Carbon Nanotubes–the Route Toward Applications. Science 2002, 297, 787792.
(12) Ebbesen, T. W.; Ajayan, P. M.: Large-scale synthesis of carbon nanotubes. Nature 1992, 358, 220222.
(13) Geim, A. K.; Novoselov, K. S.: The rise of graphene. Nat Mater 2007, 6, 183191.
(14) Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S.: Graphene-based composite materials. Nature 2006, 442, 282286.
(15) Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A.: Nanocelluloses: A New Family of Nature-Based Materials. Angewandte Chemie International Edition 2011, 50, 54385466.
(16) Gindl, W.; Keckes, J.: All-cellulose nanocomposite. Polymer 2005, 46, 1022110225.
(17) Kinnane, C.; Such, G.; Caruso, F.: Tuning the Properties of Layer-by-Layer Assembled Poly(acrylic acid) Click Films and Capsules. Macromolecules 2011, 44, 11941202.
(18) Brittain, W. J.; Minko, S.: A structural definition of polymer brushes. Journal of Polymer Science Part A: Polymer Chemistry 2007, 45, 35053512.
(19) Nelson, K.; Retsina, T.: Innovative nanocellulose process breaks the cost barrier. TAPPI JOURNAL 2014, 13, 1923.
(20) Zhang, Z.; Wu, Q.; Song, K.; Ren, S.; Lei, T.; Zhang, Q.: Using Cellulose Nanocrystals as a Sustainable Additive to Enhance Hydrophilicity, Mechanical and Thermal Properties of Poly(vinylidene fluoride)/Poly(methyl methacrylate) Blend. ACS Sustainable Chemistry & Engineering 2015, 3, 574582.
(21) Cui, L.; Paul, D. R.: Evaluation of amine functionalized polypropylenes as compatibilizers for polypropylene nanocomposites. Polymer 2007, 48, 16321640.
(22) Ehrenstein, G.: Overview of selected polymeric materials. Polymeric Materials, Carl Hanser Verlag, Munich 2001, 241.
(23) Iyer, K. A.; Torkelson, J. M.: Sustainable Green Hybrids of Polyolefins and Lignin Yield Major Improvements in Mechanical Properties When Prepared via Solid-State Shear Pulverization. ACS Sustainable Chemistry & Engineering 2015.

Keywords

Related content

Powered by UNSILO

Nanocomposites of Hydrophobized Cellulose Nanocrystals and Polypropylene

  • Blake R. Teipel (a1), Ryan J. Vano (a2), Bryan S. Zahner (a2), Elisa M. Teipel (a2), I-Cheng Chen (a3) and Mustafa Akbulut (a1) (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.