Skip to main content Accessibility help
×
Home

Nagelschmidtite as a candidate host phase for actinides, rare earth and different waste elements

  • Sergey V. Stefanovsky (a1), Olga I. Stefanovsky (a1) and Ivan L. Prusakov (a2)

Abstract

Nagelschmidtite, Ca7P2Si2O16, is an end-member of continuous solid solution Ca2SiO4 – Ca3(PO4)22Ca2SiO4 within the pseudo-binary system Ca3(PO4)2 – Ca2SiO4 (whitlockite – larnite). This phase is capable to wide isomorphic exchanges in Ca, P and Si sites: Ca2+ = Sr2+; Ca2+ = Eu2+; Ca2+ + P5+ = (RE,An)3+ + Si4+, 2Ca2+ = Na+ + (RE,An)3+; 2Ca2+ = An4+ + ☐; Ca2+ + Si4+ = (RE,An)3+ + (Al,Fe)3+; Ca2+ + Si4+ = Na+ + P5+; 2Ca2+ = Na+ + (Al,Fe)3+; Ca2+ + P5+ = Na+ + S6+. It was found in metallurgical slags and geological formations. We revealed nagelschmidtite-type phase in vitrified phosphorus-bearing radioactive incinerator slags. The materials were glass-crystalline and contained nano-sized nagelschmidtite crystals distributed in vitreous matrix phase. Average chemical composition of the largest (few microns) crystals was recalculated to formula Na1.21K1.05Ca2.22Al2.02Fe0.46Si2.69P1.26U0.08O15.76. Significant oxygen misbalance suggests higher than U(IV) oxidation state for uranium – U(V) or U(VI). Capability of nagelschmidtite to be crystallized from melt makes it promising phase for actinides, rare earths and some other fission and corrosion products at using a melting route to nuclear waste forms including cold crucible induction melting and self-propagating high-temperature synthesis.

Copyright

Corresponding author

References

Hide All
1.Stefanovsky, S.V., Yudintsev, S.V., Giere, R., Lumpkin, G.R., in: Energy, Waste and the Environment: A Geological Perspective (Geological Society, London, 2004) vol. 236, pp. 3763.
2.Hayward, P.J.. Glass-Ceramics, in: Radioactive Waste Forms for the Future edited by Lutze, W. and Ewing, R.C. (Elsevier Science Publishers B.V., 1988) pp. 427493.
3.Stefanovsky, S.V., Yudintsev, S.V., Russ. Chem. Rev. 85, 962 (2016).
4.Dmitriev, S.A., Knyazev, I.A., Lifanov, F.A., Savkin, A.E., Stefanovsky, S.V., Tolstov, I.D., in: 1996 International Conference on Incineration and Thermal Treatment Technologies. Proceedings. May 6-10, 1996. Savannah, GA, 1996, pp. 247251.
5.Lifanov, F.A., Stefanovsky, S.V., Dmitriev, S.A., Patent 1389566 USSR, 1987.
6.Stefanovsky, S.V., Lifanov, F.A., Bull. Acad. Sci. USSR: Inorg. Mater. (Russ.) 25, 502 (1989).
7.Lifanov, F.A., Stefanovsky, S.V., Sobolev, I.A., in: GLASS’89. XV International Congress on Glass. Proceedings, edited by Mazurin, O.V.. Vol. 3b (Nauka, Leninigrad, 1989) pp. 202205.
8.Lifanov, F.A., Stefanovsky, S.V., Tsveshko, O.N., Lashchenova, T.N., Fiz. Khim. Stekla (Russ.), 17, 810 (1991).
9.Stefanovsky, S.V., Ivanov, I.A., Gulin, A.N., J. Appl. Spectr. 57, 581 (1992).
10.Stefanovskii, S.V., Trul’, O.A., J. Appl. Spectr. 57, 771 (1992).
11.Stefanovsky, S., Lifanov, F., Ivanov, I., in: XVI International Congress on Glass. Madrid. Bol. Soc. Esp. Ceram. Vid. 31-C, N3 (1992) pp. 209214.
12.Bogomolova, L.D., Pavlushkina, T.K., Stefanovskii, S.V., Teplyakov, Yu. G., Tril’, O.A.., Glass. Phys. Chem. 19 413 (1993).
13.Dmitriyev, S.A., Stefanovsky, S.V., Knyazev, I.A., Lifanov, F.A., Mater. Res. Soc. Symp. Proc. 353, 1323 (1995).
14.Lashtchenova, T.N., Lifanov, F.A., Stefanovsky, S.V., in: Waste Management ’97. HLW, LLW, Mixed Wastes and Environmental Restoration - Working Towards A Cleaner Environment. Proc. Int. Symp. Tucson, CD-ROM (1997) Report 1317.
15.Lashtchenova, T.N., Stefanovsky, S.V., in: Proc. IT3 Conf. Int. Conf. On Incineration and Thermal Treatment Technologies. May 11-15, 1998. Salt Lake City (1998) pp. 603607.
16.Malinina, G.A., Stefanovsky, O.I., Stefanovsky, S.V., J. Nucl. Mater. 416, 230 (2011).
17.Malinina, G.A., Stefanovsky, O.I., Stefanovsky, S.V., Glass Phys. Chem. 38, 280 (2012).
18.Stefanovsky, S.V., Stefanovsky, O.I., Malinina, G.A., in: Waste Management 2012 Conference, February 25 – March 1, 2012, Phoenix, AZ, Report 12207, CD-ROM (2012).
19.Malinina, G.A., Stefanovsky, S.V., Nikonov, B.S., Phys. Chem. Mater. Treat. (Russ.) [6], 82 (2013).
20.Malinina, G.A., Stefanovsky, S.V., J. Appl. Spectr. 81, 200 (2014).
21.Malinina, G.A., Stefanovsky, S.V., Radiochemistry 56, 628 (2014).
22.Malinina, G.A., Stefanovsky, S.V., Shiryaev, A.A., Zubavichus, Y.V., Ceramics for Environmental and Energy Applications II. Ceram. Trans. 246 (2014) pp. 265272.
23.Nagelschmidt, G., J. Chem. Soc. 865 (1937).
24.Barrett, R.L., McCaughey, W.J., Amer. Miner. 27, 680 (1942).
25.Gross, S.. The Mineralogy of the Hatrurim Formation, Israel, Geol. Surv. Israel Bull. 70 (1977) pp. 180.
26.Galuskin, E.V., Galuskina, I.O., Gfeller, F., Krüger, B., Kusz, J., Vapnik, Y., Dulski, M., Dzierźanovski, P., Eur. J. Miner. 28, 105 (2016).
27.Nurse, R.W., Welch, J.H., Gutt, W., J. Chem. Soc. [220] 1077 (1959).
28.Rubio, V., de la Casa-Lillo, M.A., De Aza, S., De Aza, P.N., J. Amer. Ceram. Soc. 94, 4459 (2011).
29.Rivenet, M., Cousin, O., Boivin, J.C., Abraham, F., Ruchaud, N., Hubert, P., J. Eur. Ceram. Soc. 20, 1169 (2000).
30.Kuznetsov, A.V., Veresov, A.G., Putlyaev, V.I., Int. Sci. J. Alter. Energy Ecology (Russ.), 45, 82 (2007).
31.Wu, Ch., Fan, W., Chang, J., Zhang, M., Xiao, Y., J. Amer. Ceram. Soc, 96, 928 (2013).
32.Evdokimov, P.V., Putlyaev, V.I., Ivanov, V.K., Garshev, A.P., Shatalova, T.B., Orlov, N.K., Klimashina, E.S., Safronova, T.V., Russ. J. Inorg. Chem. 59, 1219 (2014).
33.Celotti, G., Landi, E., J. Eur. Ceram. Soc. 23, 851 (2003).
34.Sugiyama, K., Kato, Y., Mikouchi, T., in: 20th General Meeting of the International Mineralogical Association, 21-27 August 2010, Budapest, Hungary, 20 (2010), p. 725.
35.Widmer, R., Gfeller, F., Armbruster, T., J. Amer. Ceram. Soc. 98, 3956 (2015).
36.Gfeller, F., Widmer, R., Krüger, B., Galuskin, E.V., Galuskina, I.O., Armbruster, T., Eur. J. Mineral. 27, 755 (2015).
37.Shevtsova, N.N., Bushuev, N.N., Volfkovich, S.I., Aziev, R.G., Moscow Univ. Chem. Bull. 36, 117 (1981).
38.Mikouchi, T., Sugiyama, K., Kato, Y., Yamaguchi, A., Koizumi, E., Kaneda, K., in: 41st Lunar and Planetary Science Conference, March 1-5, 2010, The Woodlands, TX, 2343 (2010).
39.Segnit, E.R., J. Miner. Soc. 29, 173 (1950).
40.Eitel, W.. The Physical Chemistry of the Silicates (The University of Chicago Press, Chicago, 1954).
41.Schreiber, H.D., Kozak, S.J., Leonhard, P.G., McManus, K.K., Glastech. Ber. 60, 389 (1987).
42.Bingham, P.A., Hand, R.J., Mater. Res. Bull. 43, 1679 (2008).
43.Stefanovsky, S.V., Stefanovsky, O.I., Remizov, M.B., Belanova, E.A., Kozlov, P.V., Glazkova, Ya.S., Sobolev, A.V., Presniakov, I.A., Kalmykov, S.N., Myasoedov, B.F., J. Nucl. Mater. 466, 142 (2015).

Keywords

Nagelschmidtite as a candidate host phase for actinides, rare earth and different waste elements

  • Sergey V. Stefanovsky (a1), Olga I. Stefanovsky (a1) and Ivan L. Prusakov (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed