Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T08:02:32.447Z Has data issue: false hasContentIssue false

Morphology and Size-Dependent Visible-Light-Driven Photocatalytic Hydrogen Evolution of Porphyrin Assemblies

Published online by Cambridge University Press:  10 April 2019

Yong Zhong
Affiliation:
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng475004, China
Yaoqing Hu
Affiliation:
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng475004, China
Jiefei Wang
Affiliation:
International Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng475004, China
Jinghan Wang
Affiliation:
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng475004, China
Xitong Ren
Affiliation:
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng475004, China
Jiajie Sun*
Affiliation:
School of Physics and Electronics, Henan University, Kaifeng475004, China
Feng Bai*
Affiliation:
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng475004, China
*
*Email: sunjiajie2006@hotmail.com (J. Sun)
*Email: baifengsun@126.com (F. Bai)
Get access

Abstract

Photocatalytic water splitting to form hydrogen can effectively alleviate energy and environmental problems attracting wide attention. However, the current photocatalysts have low photocatalytic efficiencies due to the narrow absorption spectrum, which is far from the actual application requirements. Herein, we use the as-prepared zinc porphyrin self-assemblies to visible-light-drive photocatalytic hydrogen evolution with Pt as the cocatalyst and ascorbic acid (AA) as the sacrificial agent. The results exhibit morphology-dependent performance and hexagonal stacks achieved optimal H2 evolution rate (47.1 mmol/h/g), then followed by nanodiscs, nanorod and tetragonal stacks, meanwhile the nanorods with different aspect ratios show size-dependent properties. The UV-vis absorption and photoluminescence spectra and the shortening of decay time of the corresponding ZnTPyP aggregates reveal that the well-defined self-assembled porphyrin networks are J-aggregation and boost efficient energy transfer with respect to monomer. Such porphyrin self-assemblies are standing for one of the most promising photosensitizers in photocatalysis field and provide an important reference for designing the next generation of hydrogen production.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chen, X., Shen, S., Guo, L., Mao, S. S., Chem. Rev. 110, 6503 (2010).CrossRefGoogle Scholar
Ran, J., Zhang, J., Yu, J., Jaroniec, M., Qiao, S. Z., Chem. Soc. Rev. 46, 7787 (2015).Google Scholar
Luan, S., Qu, D., An, L., Jiang, W. S., Gao, X., Hua, S. X., Miao, X., Wen, Y. J., Sun, Z. C., Sci. Bull. 63, 683 (2018).CrossRefGoogle Scholar
Yuan, Y. J., Yu, Z. T., Chen, D. Q., Zou, Z. G., Chem. Soc. Rev. 46, 603 (2017).CrossRefGoogle Scholar
Gong, X., Milic, T., Xu, C., Batteas, J. D., Drain, C. M., J. Am. Chem. Soc. 124, 14290 (2002).CrossRefGoogle Scholar
Drain, C. M., Varotto, A., Radivojevic, I., Chem. Rev. 109, 1630 (2009).CrossRefGoogle Scholar
Gottfried, J. M., Surf. Sci. Rep. 70, 259 (2015).CrossRefGoogle Scholar
Medforth, C. J., Wang, Z., Martin, K. E., Song, Y., Jacobsen, J. L., Shelnutt, J. A., Chem. Commun., 47, 7261 (2009).CrossRefGoogle Scholar
Zhang, W., Xing, L., Wang, H., Liu, X., Feng, Y., Gao, C.. Langmuir, 31, 4330 (2015).CrossRefGoogle Scholar
Zhang, L. L., Lu, Y. T., Du, Y. K., Yang, P., Wang, X. M., J. Porphyrins Phthalocyanines, 14 , 540 (2010).CrossRefGoogle Scholar
Wang, J., Zhong, Y., Wang, L., Zhang, N., Cao, R., Bian, K., Alarid, L., Haddad, R. E., Bai, F., Fan, H., Nano Lett. 16, 6523 (2016).CrossRefGoogle Scholar
Zhang, N., Wang, L., Wang, H., Cao, R., Wang, J., Bai, F., Fan, H., Nano Lett. 18, 560 (2017).CrossRefGoogle Scholar
Wang, D., Niu, L., Qiao, Z., Cheng, D., Wang, J., Zhong, Y., Bai, F., Wang, H., Fan, H., ACS Nano, 12, 3796 (2018).CrossRefGoogle Scholar
Wei, W., Bai, F., Fan, H., iScience, 11, 272 (2019).CrossRefGoogle Scholar
Zhong, Y., Wang, J., Zhang, R., Wei, W., Wang, H., , X., Bai, F., Wu, H., Haddad, R., Fan, H., Nano Lett. 14, 7175 (2014).CrossRefGoogle Scholar
Bai, F., Sun, Z., Wu, H., Haddad, R. E., Coker, E. N., Huang, J. Y., Rodriguez, M. A., Fan, H., Nano Lett. 11, 5196 (2011).CrossRefGoogle Scholar
Wei, W., Bai, F., Fan, H., Angew. Chem. Int. Edit. (2019). DOI: 10.1002/ange.201902620.Google Scholar
Bian, K., Alarid, L., Rosenberg, D., Fan, H., MRS Adv. 3, 2421 (2018).CrossRefGoogle Scholar
Li, Q., Zhao, N., Bai, F., MRS Bulletin, 44 , 172 (2019).CrossRefGoogle Scholar
Zhong, Y., Wang, J., Tian, Y., MRS Bulletin, 44 , 183 (2019).CrossRefGoogle Scholar
Jiang, H., Zhang, L., Chen, J., Liu, M., ACS Nano, 11, 12453 (2017).CrossRefGoogle Scholar
Liu, Y., Wang, L., Feng, H., Ren, X., Ji, J., Bai, F., Fan, H., Nano Lett. (2019). DOI: 10.1021/acs.nanolett.9b00423.Google Scholar
Li, Z. J., Li, X. B., Wang, J. J., Yu, S., Li, C. B., Tung, C. H., Wu, L. Z., Energy Environ. Sci. 6, 465 (2013).CrossRefGoogle Scholar
Khoa, N. T., Kim, S. W., Yoo, D. H., Cho, S., Kim, E. J., Hahn, S. H., ACS Appl. Mater. Interfaces, 7, 3524 (2015).CrossRefGoogle Scholar
Mandal, S., Nayak, S. K., Mallampalli, S., Patra, A., ACS Appl. Mater. Interfaces, 6, 130 (2014).CrossRefGoogle Scholar