Skip to main content Accessibility help

Monocrystalline elastic constants of fcc-CrMnFeCoNi high entropy alloy

  • Katsushi Tanaka (a1), Takeshi Teramoto (a1) and Ryo Ito (a1)


Mono-crystalline elastic constants of equiatomic quinary Cr-Mn-Fe-Co-Ni high entropy alloy with the fcc structure have experimentally been determined by a resonance ultrasound spectroscopy at room temperature. The values of the bulk modulus of the high entropy alloy experimentally determined are similar to other conventional fcc metals when the values are normalized by the melting points. This indicates that the entropy change at melting is similar to that of conventional metals. The values of Pough’s index and the Cauchy pressure are determined as 1.79 and -11.6 GPa, respectively. When the ductility of the alloy is judged from the indices, the ductility of the high entropy alloy is limited. In order to explain the negative Cauchy pressure of the high entropy alloy, it is required to assume that relatively strong directional interatomic bondings like intermetallic compounds exist in the alloy though the crystal is disordered solid solution.


Corresponding author


Hide All
1. Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., Chang, S.Y., Adv. Eng. Mater. 6, 299303 (2004).
2. Senkow, O.N., Wilks, G.B., Scott, J.M., Miracle, D.B., Intermetallics 19, 698706 (2011).
3. Senkow, O.N., Scott, J.M., Senkova, S.V., Meisenkothen, F., Miracle, D.B., Woodward, C.F., J. Mater. Sci. 47, 40624074 (2012).
4. Zou, Y., Maiti, S., Steurer, W., Spolenak, R., Acta Mater. 65, 8597 (2014).
5. Wu, Y. D., Cai, Y. H., Wang, T., Si, J.J., Zhu, J., Wang, Y.D., Hui, X.D., Mater. Lett. 130, 277280 (2014).
6. Couzinié, J.P., Dirras, G., Perrière, L., Chauveau, T., Leroy, E., Champion, Y., Guillot, I., Mater. Lett. 126, 285287 (2014).
7. Cantor, B., Chang, I.T.H., Knight, P., Vincent, A.J.B., Mater. Sci. Eng. A375-377, 213218 (2004).
8. Otto, F., Yang, Y., Bei, H., George, E.P., Acta Matter. 61, 26282638 (2013).
9. Yao, M.J. Pradeep, K.G., Tasan, C.C., Raabe, D., Scripta Mater. 68, 526529 (2013).
10. He, J.Y., Liu, W.H., Wang, H., Wu, Y., Liu, X.J., Nieh, T.G., Lu, Z.P., Acta Mater. 62, 105113 (2014).
11. Takeuchi, A., Amiya, K., Wada, T., Yubuta, K., Zhang, W., JOM 66, 19841992 (2014).
12. Lilensten, L., Couzinié, J.P., Perriére, L., Bourgon, J., Emery, N., Guillot, I., Mater. Lett. 132, 123125 (2014).
13. Okamoto, N.L., Fujimoto, S., Kambara, Y., Kawamura, M., Chen, Z.M.T., Matsunoshita, H., Tanaka, K., Inui, H., Sci. Rep. 6, 35863 (2016).
14. Haglund, A., Koehler, M., Catoor, D., George, E.P., Keppens, V., Intermetallics 58, 6264 (2015).
15. Laplanche, G., Gadaud, P., Horst, O., Otto, F., Eggeler, G., George, E.P., J. Alloys Comp. 623, 348353 (2015).
16. Zaddach, A.J., Niu, C., Koch, C.C., Irving, D.L., JOM 65, 17801789 (2013).
17. Hill, R., Proc. Phys. Soc. A65, 349354 (1952).
18. Tanaka, K., Koiwa, M., High Temp. Mater. Proc. 18, 323336 (1999).
19. Pugh, S.F., Phil. Mag. 45, 823843 (1954).
20. Pettifor, D.G., Mater. Sci. Tech. 8, 345349 (1992).
21. Simmons, G., Wang, H., “Single Crystal Elastic Constants and Calculated Aggregate Properties; a Handbook”, MIT Press, Cambridge (1971).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed