Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T15:26:59.976Z Has data issue: false hasContentIssue false

Micromechanics of Wood Cell Wall

Published online by Cambridge University Press:  26 January 2016

Lik-ho Tam
Affiliation:
Ph.D. Student, Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong, China
Denvid Lau*
Affiliation:
Assistant Professor, Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong, China
*
*(Email: denvid@mit.edu)
Get access

Abstract

The damage evolution and structural failure in trees and other plants are mainly originated from the plastic yielding in the wood cell wall at the microstructural level, which consists of cellulose fibrils embedded in a polymer matrix of hemicellulose and either lignin or pectin. Understanding the mechanical behavior of wood cell wall at the plastic regime is critical to the investigation of the fracture characteristics of trees at macro-scale. In this research work, the wood cell wall, which consists of cellulose fibrils, hemicellulose chains and lignin macromolecules, is modeled at the mesoscale to investigate the mechanical responses under deformation. By examining the force-strain relationship, the mechanical behaviors of the wood cell wall at the plastic yielding range are obtained, which are initiated from the slippage between the fibrils and polymer matrix. The simulation results are compared with experimental measurements and theoretical predictions to provide a bottom-up description of micromechanics of the wood cell wall, and to explain the damage evolution and structural failure occurred at the larger scales. The wood cell wall investigated here can be applied to the construction of wood hierarchical structure as a basic unit and adapted to the studies of different natural materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jim, C. Y., Journal of environmental management 74 (2), 161172 (2005).Google Scholar
Gibson, L. J., Journal of the Royal Society Interface 9 (76), 27492766 (2012).Google Scholar
Jin, K., Qin, Z. and Buehler, M. J., Journal of the mechanical behavior of biomedical materials 42, 198206 (2015).Google Scholar
Barnett, J. and Bonham, V. A., Biological reviews 79 (2), 461472 (2004).CrossRefGoogle Scholar
Booker, R. E. and Sell, J., Holz als Roh-und Werkstoff 56 (1), 18 (1998).Google Scholar
Keckes, J., Burgert, I., Frühmann, K., Müller, M., Kölln, K., Hamilton, M., Burghammer, M., Roth, S. V., Stanzl-Tschegg, S. and Fratzl, P., Nature materials 2 (12), 810813 (2003).CrossRefGoogle Scholar
Köhler, L. and Spatz, H.-C., Planta 215 (1), 3340 (2002).CrossRefGoogle Scholar
Adler, D. C. and Buehler, M. J., Soft Matter 9 (29), 71387144 (2013).Google Scholar
Salmén, L., Comptes rendus biologies 327 (9), 873880 (2004).Google Scholar
Buehler, M. J., Journal of Materials Research 21 (11), 28552869 (2006).CrossRefGoogle Scholar
Buehler, M. J., Journal of Materials Research 21 (08), 19471961 (2006).Google Scholar
Sen, D. and Buehler, M. J., International Journal of Applied Mechanics 2 (04), 699717 (2010).Google Scholar
Plimpton, S., Journal of Computational Physics 117 (1), 119 (1995).Google Scholar
Sun, H., Mumby, S. J., Maple, J. R. and Hagler, A. T., Journal of the American Chemical Society 116 (7), 29782987 (1994).CrossRefGoogle Scholar
Sun, H., Macromolecules 28 (3), 701712 (1995).CrossRefGoogle Scholar
Mazeau, K. and Heux, L., The Journal of Physical Chemistry B 107 (10), 23942403 (2003).Google Scholar
Tanaka, F. and Iwata, T., Cellulose 13 (5), 509517 (2006).Google Scholar
Hanus, J. and Mazeau, K., Biopolymers 82 (1), 5973 (2006).CrossRefGoogle Scholar
Da Silva Perez, D., Ruggiero, R., Morais, L. C., Machado, A. E. H. and Mazeau, K., Langmuir 20 (8), 31513158 (2004).Google Scholar
Rahman, R., Foster, J. and Haque, A., The Journal of Physical Chemistry A 117 (25), 53445353 (2013).Google Scholar
Pu, Y., Zhang, D., Singh, P. M. and Ragauskas, A. J., Biofuels, Bioproducts and Biorefining 2 (1), 5873 (2008).CrossRefGoogle Scholar
Tam, L.-h. and Lau, D., RSC Advances 4 (62), 3307433081 (2014).Google Scholar
Cousins, W. J., Wood Science and Technology 10 (1), 917 (1976).Google Scholar
Laio, A. and Gervasio, F. L., Reports on Progress in Physics 71 (12), 126601 (2008).Google Scholar
Lau, D., Büyüköztürk, O. and Buehler, M. J., Journal of Materials Research 27 (14), 17871796 (2012).Google Scholar
Lau, D., Broderick, K., Buehler, M. J. and Büyüköztürk, O., Proceedings of the National Academy of Sciences 111 (33), 1199011995 (2014).Google Scholar
Tam, L.-h. and Lau, D., Polymer 57, 132142 (2015).Google Scholar
Zhou, A., Tam, L.-h., Yu, Z. and Lau, D., Composites Part B: Engineering 71, 6373 (2015).Google Scholar
Yu, Z. and Lau, D., Nanoscale Research Letters 10 (1), 16 (2015).Google Scholar
Tam, L.-h. and Lau, D., Multiscale & Multiphysics Mechanics (in revision).Google Scholar
Allen, M. P. and Tildesley, D. J., Computer simulation of liquids. (Oxford university press, 1989).Google Scholar
Charlier, L. and Mazeau, K., The Journal of Physical Chemistry B 116 (14), 41634174 (2012).Google Scholar
Terashima, N., Kitano, K., Kojima, M., Yoshida, M., Yamamoto, H. and Westermark, U., Journal of wood science 55 (6), 409416 (2009).Google Scholar
Skaar, C., Wood-water relations. (Springer-Verlag, 1988).Google Scholar
Eder, M., Arnould, O., Dunlop, J. W., Hornatowska, J. and Salmén, L., Wood Science and Technology 47 (1), 163182 (2013).CrossRefGoogle Scholar