Skip to main content Accessibility help

Metal-Organic chemical vapor deposition of BN on sapphire and its heterostructures with 2D and 3D materials

  • Qing Paduano (a1) and Michael Snure (a1)


We studied MOCVD processing for direct growth of BN on 2” sapphire substrates as a template for heterostructures with two dimensional (2D) and three dimensional (3D) materials. The combined experimental evidence points to three growth modes for BN: self-terminating, 3D random, and layer-by-layer, all of which are dependent on V/III ratio, temperature, pressure, and substrate surface modification via nitridation. At moderate temperature (950-1050°C), BN growth using high V/III ratio is self-terminating, resulting in c-oriented films aligned in-plane with respect to the orientation of the sapphire substrate. BN films grown under low V/III ratios are 3D, randomly oriented, and nano-crystalline. At higher temperature (1100°C), self-terminating growth transitions to a continuous layer-by-layer growth mode. When BN growth is self-terminating, films exhibit atomically smooth surface morphology and highly uniform thickness over a 2” sapphire wafer. Using these BN/sapphire templates we studied the growth of 2D and 2D/3D heterostructures. To study direct growth of 2D on 2D layered material we deposited graphene on BN in a continued process within the same MOCVD system. Furthermore, we explore the growth and nucleation of 3D materials (GaN and AlN) on BN. AlGaN/GaN based high electron mobility transistor (HEMT) structures grown on BN/sapphire exhibited two-dimensional electron gas characteristics at the AlGaN/GaN heterointerface, with room-temperature electron mobility and sheet electron density about 1900cm2/Vs and 1x1013cm-2, respectively.


Corresponding author


Hide All
1. Nakamura, T., J. Electrochem. Soc. 133, 1120 (1986).
2. Cubarovs, M., Pedersen, H., Högberg, H., Darakchieva, V., Jens, J., Persson, P., Henry, A., Physica Status Solidi. Rapid Research Letters, (5), 10-11, 397 (2011).
3. Kobayashi, Y., Akasaka, T., J. Crystal Growth, 310 5044 (2008).
4. Paduano, Q. S. and Snure, M., Appl. Phys. Exp. 7, 071004, (2014).
5. Chen, J. H., Jang, C., Xiao, S., Ishigami, M., Fuhrer, M. S., Nature Nanotech. 3, 206 (2008).
6. Dean, C. R., Young, A. F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K. L., Hone, J., Nat. Nanotechnol. 5, 722 (2010).
7. Tang, S., Ding, G., Xie, X., Chen, J., Wang, C., Ding, X., Huang, F., Lu, W., Jiang, M., Carbon 50, 321 (2012).
8. Yang, W., Chen, G. R., Shi, Z. W., Liu, C. C., Zhang, L. C., Xie, G. B., Cheng, M., Wang, D. M., Yang, R., Shi, D. X., Watanabe, K., Taniguchi, T., Yao, Y. G., Zhang, Y. B., Zhang, G. Y., Nat. Mater. 12, 792 (2013).
9. Tang, S., Wang, H., Wang, H. S., Sun, Q., Zhang, X., Cong, C., Xie, H., Liu, X., Zhou, X., Huang, F., Chen, X., Yu, T., Ding, F., Xie, X., Jiang, M., Nat. Commun. 6, 6499 (2015).
10. Wang, M., Jang, S. K., Jang, W. J., Kim, M., Park, S. Y., Kim, S. W., Kahng, S. J., Choi, J. Y., Ruoff, R. S., Song, Y. J., Lee, S., Adv. Mater. 25, 2746 (2013).
11. Zhang, L., Li, X., Shao, Y., Yu, J., Wu, Y., Hao, X., Yin, Z., Dai, Y., Tian, Y., Huo, Q., Shen, Y., Hua, Z., Zhang, B., ACS Appl. Mater. Interfaces 7, 4504(2015).
12. Kobayashi, Y., Kumakura, K., Akasaka, T., Makimoto, T., Nature 484, 223 (2012).
13. Felbinger, J. G., Chandra, M. V. S., Sun, Y, Eastman, L. F., Wasserbauer, J., Faili, F., Babic, D., Francis, D., and Ejeckam, F., IEEE Electron Device Lett. 28, 948 (2007)
14. Nepal, N., Wheeler, V. D., Anderson, T. J., Kub, F. J., Mastro, M. A., Myers-Ward, R. L., Qadri, S. B., Freitas, J. A., Hernandez, S. C., Nyakiti, L. O., Walton, S. G., Gaskill, K., and Eddy, C. R. Jr., Appl. Phys. Exp. 6, 061003 (2013).
15. Snure, M., Paduano, Q. and Kiefer, A., J. Crystal Growth, 436, 16 (2016).
16. Paduano, Q. S., Snure, M. and Shoaf, J., in MRS Proceeding Vol. 1726, (2015).
17. Geick, R., Perry, C. H., Rupprecht, G., Phys. Rev. 146, 543 (1966).
18. Nemanich, R. J., Solin, S. A., Martin, R. M., Phys. Rev. B 23, (1981) 6348. 18)
19. Snure, M., Paduano, Q., Hamilton, M., Shoaf, J. and Matthew Mann, J., Thin Solid Films 517, 51 (2014).
20. Rozenberg, A. S., Sinenko, Y. A., Chukanov, N. V., J. Mat. Sci. 28, (1993) 5675.
21. Ismach, A., Chou, H., Ferrer, D. A., Wu, Y., McDonnell, S., Floresca, H, C., Covacevich, A., Pope, C., Piner, R., Kim, M. J., Wallace, R. M., Colombo, L., and Ruoff, R. S., ACS Nano, 6 (7), 6378 (2012).
22. Tay, R. Y., Griep, M. H., Mallick, G., Tsang, S. H., Singh, R. S., Tumlin, T., Teo, E. H. T., Karna, S. P., Nano Lett. 14, 839 (2014).
23. Hashimoto, T., Terakoshi, Y., Ishida, M., Yuri, M., Imafuji, O., Sugino, T., Yoshikawa, A., and Itoh, K., J. Cryst. Growth 189-190, 254 (1998).
24. Kobayashi, Y., Tsai, C. L. and Akasaka, T., Phys. Status Solidi C, 7, 1906 (2010).
25. Chubarov, M., Pedersen, H., Ho¨gberg, H., Darakchieva, V., Jensen, J., Persson, P. O. Å. and Henry, A., Phys. Status Solidi RRL, 2011, 5, 397.
26. Uchida, K., Watanabe, A., Yano, F., Kouguchi, M., Tanaka, T., and Minagawa, S., J. Appl. Phys. 79, 3487 (1996).
27. Paduano, Q. S., Snure, M., Weyburne, D. W., and Kiefer, A., Submitted to J. Crystal Growth, (2016).
28. Snure, M. and Paduano, Q. MRS Proceedings 1781, 1 (2015).
29. Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M. S., Kong, J., Nano Lett. 9, 30 (2009).
30. Cancado, L. G., Jorio, A., Pimenta, M. A., Phys Rev B 76, 064304 (2007).
31. Hiroki, M., Kumakura, K., Kobayashi, Y., Akasaka, T., Makimoto, T., Yamamoto, H., Appl. Phys. Lett. 105, 193509 (2014).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed