Skip to main content Accessibility help

Lessons Learned from the Use of Unconventional Materials for CO2 Capture

  • Jason E. Bara (a1), Max S. Mittenthal (a1), Brian Flowers (a1), Wesley F. Taylor (a1), Alex H. Jenkins (a1), David A. Wallace (a1) and J. David Roveda (a1)...


Having worked on several approaches to CO2 capture over the past decade, we have studied a great number of physical and chemical solvents as well as polymer and composite membranes. Initially, most of these materials were based upon ionic liquids (ILs), however due to challenges encountered in applying ILs to meet the demanding requirements in CO2 separation processes, there is a need to reconsider what role (if any) ILs might play in CO2 capture technologies. Ultimately, more promising and robust materials will not come from ILs themselves, but from retrosynthetic analysis and a reconsideration of which structural variables and properties are (and are not) important. The hybridization of the constituent parts into entirely new, yet seemingly familiar substances, can yield greatly improved properties and economics. This manuscript highlights recent work from our group based on lessons learned from ILs that have spurred the development of new amine solvents and polymer materials to better address the demanding process conditions and requirements of CO2 capture and related separations.


Corresponding author


Hide All
[1] Bara, J. E., Camper, D. E., Gin, D. L., and Noble, R. D., “Room-Temperature Ionic Liquids and Composite Materials: Platform Technologies for CO2 Capture,” Accounts of Chemical Research, vol. 43, pp. 152159, Jan 2010.
[2] Bara, J. E., Carlisle, T. K., Gabriel, C. J., Camper, D., Finotello, A., Gin, D. L., et al., “Guide to CO2 Separations in Imidazolium-Based Room-Temperature Ionic Liquids,” Industrial & Engineering Chemistry Research, vol. 48, pp. 27392751, Mar 2009.
[3] Ramdin, M., de Loos, T. W., and Vlugt, T. J. H., “State-of-the-Art of CO2 Capture with Ionic Liquids,” Industrial & Engineering Chemistry Research, vol. 51, pp. 81498177, 2012/06/20 2012.
[4] Aparicio, S., Atilhan, M., and Karadas, F., “Thermophysical Properties of Pure Ionic Liquids: Review of Present Situation,” Industrial & Engineering Chemistry Research, vol. 49, pp. 95809595, 2010/10/20 2010.
[5] Brennecke, J. F. and Gurkan, B. E., “Ionic liquids for CO2 capture and emission reduction,” J. Phys. Chem. Lett., vol. 1, pp. 34593464, // 2010.
[6] Muldoon, M. J., Aki, S. N. V. K., Anderson, J. L., Dixon, J. K., and Brennecke, J. F., “Improving Carbon Dioxide Solubility in Ionic Liquids,” The Journal of Physical Chemistry B, vol. 111, pp. 90019009, 2007/08/01 2007.
[7] Cadena, C., Anthony, J. L., Shah, J. K., Morrow, T. I., Brennecke, J. F., and Maginn, E. J., “Why is CO2 so soluble in imidazolium-based ionic liquids?,” Journal of the American Chemical Society, vol. 126, pp. 53005308, Apr 2004.
[8] Shannon, M. S. and Bara, J. E., “Properties of Alkylimidazoles as Solvents for CO2 Capture and Comparisons to Imidazolium-Based Ionic Liquids,” Industrial & Engineering Chemistry Research, vol. 50, pp. 86658677, 2011.
[9] Bates, E. D., Mayton, R. D., Ntai, I., and Davis, J. H., “CO2 capture by a task-specific ionic liquid,” Journal of the American Chemical Society, vol. 124, pp. 926927, Feb 2002.
[10] Camper, D., Bara, J. E., Gin, D. L., and Noble, R. D., “Room-Temperature Ionic Liquid-Amine Solutions: Tunable Solvents for Efficient and Reversible Capture Of CO2,” Industrial & Engineering Chemistry Research, vol. 47, pp. 84968498, Nov 2008.
[11] Gutowski, K. E. and Maginn, E. J., “Amine-Functionalized Task-Specific Ionic Liquids: A Mechanistic Explanation for the Dramatic Increase in Viscosity upon Complexation with CO2 from Molecular Simulation,” Journal of the American Chemical Society, vol. 130, pp. 1469014704, Nov 2008.
[12] LaFrate, A. L., Huffman, M. C., Brown, N., Shannon, M. S., Belmore, K., and Bara, J. E., “Accelerated Aging and Qualitative Degradation Pathway Analysis of CO2 Capture Solvents Containing Ionic Liquids,” Energy Fuels, vol. 26, pp. 53455349, // 2012.
[13] Bara, J. E., “What chemicals will we need to capture CO2?,” Greenhouse Gases: Sci. Technol., vol. 2, pp. 162171, // 2012.
[14] Jessop, P. G., “Searching for green solvents,” Green Chem., vol. 13, pp. 13911398, // 2011.
[15] Soutullo, M. D., Odom, C. I., Wicker, B. F., Henderson, C. N., Stenson, A. C., and Davis, J. H. Jr., “Reversible CO2 Capture by Unexpected Plastic-, Resin-, and Gel-like Ionic Soft Materials Discovered during the Combi-Click Generation of a TSIL Library,” Chem. Mater., vol. 19, pp. 35813583, // 2007.
[16] Drab, D. M., Smiglak, M., Shamshina, J. L., Kelley, S. P., Schneider, S., Hawkins, T. W., et al., “Synthesis of N-cyanoalkyl-functionalized imidazolium nitrate and dicyanamide ionic liquids with a comparison of their thermal properties for energetic applications,” New J. Chem., vol. 35, pp. 17011717, 2011.
[17] Vrachnos, A., Kontogeorgis, G., and Voutsas, E., “Thermodynamic modeling of acidic gas solubility in aqueous solutions of MEA, MDEA and MEA-MDEA blends,” Industrial & Engineering Chemistry Research, vol. 45, pp. 51485154, Jul 2006.
[18] Lenarcik, B. and Ojczenasz, P., “The influence of the size and position of the alkyl groups in alkylimidazole molecules on their acid-base properties,” Journal of Heterocyclic Chemistry, vol. 39, pp. 287290, Mar-Apr 2002.
[19] Carlisle, T. K., Bara, J. E., Lafrate, A. L., Gin, D. L., and Noble, R. D., “Main-chain imidazolium polymer membranes for CO2 separations: An initial study of a new ionic liquid-inspired platform,” Journal of Membrane Science, vol. 359, pp. 3743, Sep 2010.
[20] Xiao, Y., Low, B. T., Hosseini, S. S., Chung, T. S., and Paul, D. R., “The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—A review,” Progress in Polymer Science, vol. 34, pp. 561580, 6// 2009.
[21] Sanders, D. F., Smith, Z. P., Guo, R., Robeson, L. M., McGrath, J. E., Paul, D. R., et al., “Energy-efficient polymeric gas separation membranes for a sustainable future: A review,” Polymer, vol. 54, pp. 47294761, 8/16/ 2013.
[22] Zhang, C., Cao, B., Coleman, M. R., and Li, P., “Gas transport properties in (6FDA-RTIL)-(6FDA-MDA) block copolyimides,” Journal of Applied Polymer Science, vol. 133, pp. n/a-n/a, 2016.
[23] Li, P. and Coleman, M. R., “Synthesis of room temperature ionic liquids based random copolyimides for gas separation applications,” Eur. Polym. J., vol. 49, pp. 482491, // 2013.
[24] Li, P., Zhao, Q., Anderson, J. L., Varanasi, S., and Coleman, M. R., “Synthesis of copolyimides based on room temperature ionic liquid diamines,” J. Polym. Sci., Part A: Polym. Chem., vol. 48, pp. 40364046, // 2010.
[25] Shaplov, A. S., Morozova, S. M., Lozinskaya, E. I., Vlasov, P. S., Gouveia, A. S. L., Tome, L. C., et al., “Turning into poly(ionic liquid)s as a tool for polyimide modification: synthesis, characterization and CO2 separation properties,” Polym. Chem., vol. 7, pp. 580591, // 2016.
[26] Tome, L. C. and Marrucho, I. M., “Ionic liquid-based materials: a platform to design engineered CO2 separation membranes,” Chemical Society Reviews, 2016.
[27] , X.-Q., Qiao, Y.-Q., He, J.-R., Pan, M., Kang, B.-S., and Su, C.-Y., “Triple-Stranded Helical and Plywood-Like Arrays: Two Uncommon Framework Isomers Based on the Common One-Dimensional Chain Structures,” Crystal Growth & Design, vol. 6, pp. 19101914, 2006/08/01 2006.
[28] Bara, J. E., Kaminski, A. K., Noble, R. D., and Gin, D. L., “Influence of nanostructure on light gas separations in cross-linked lyotropic liquid crystal membranes,” Journal of Membrane Science, vol. 288, pp. 1319, Feb 2007.
[29] Bara, J. E., Lessmann, S., Gabriel, C. J., Hatakeyama, E. S., Noble, R. D., and Gin, D. L., “Synthesis and performance of polymerizable room-temperature ionic liquids as gas separation membranes,” Industrial & Engineering Chemistry Research, vol. 46, pp. 53975404, Aug 2007.
[30] Wijmans, J. G. and Baker, R. W., “The solution-diffusion model: a review,” Journal of Membrane Science, vol. 107, pp. 121, 1995.
[31] Robeson, L. M., “The upper bound revisited,” Journal of Membrane Science, vol. 320, pp. 390400, 2008.
[32] Freeman, B. D., “Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes,” Macromolecules, vol. 32, pp. 375380, Jan 1999.
[33] Robeson, L. M., “CORRELATION OF SEPARATION FACTOR VERSUS PERMEABILITY FOR POLYMERIC MEMBRANES,” Journal of Membrane Science, vol. 62, pp. 165185, Oct 1991.
[34] Wiegand, J. R., Smith, Z. P., Liu, Q., Patterson, C. T., Freeman, B. D., and Guo, R., “Synthesis and characterization of triptycene-based polyimides with tunable high fractional free volume for gas separation membranes,” J. Mater. Chem. A, vol. 2, pp. 1330913320, // 2014.
[35] Shamsipur, H., Dawood, B. A., Budd, P. M., Bernardo, P., Clarizia, G., and Jansen, J. C., “Thermally Rearrangeable PIM-Polyimides for Gas Separation Membranes,” Macromolecules (Washington, DC, U. S.), vol. 47, pp. 55955606, // 2014.
[36] Bara, J. E., Hatakeyama, E. S., Gin, D. L., and Noble, R. D., “Improving CO2 permeability in polymerized room-temperature ionic liquid gas separation membranes through the formation of a solid composite with a room-temperature ionic liquid,” Polymers for Advanced Technologies, vol. 19, pp. 14151420, Oct 2008.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed