Skip to main content Accessibility help

Investigation on MoS2(1-x)Te2x Mixture Alloy Fabricated by Co-sputtering Deposition

  • Y. Hibino (a1), S. Ishihara (a1) (a2), N. Sawamoto (a1), T. Ohashi (a3), K. Matsuura (a3), H. Machida (a4), M. Ishikawa (a4), H. Sudo (a4), H. Wakabayashi (a3) and A. Ogura (a1)...


We report the synthesis of MoS2(1-x)Te2x by co-sputtering deposition and effect of mixture on its bandgap. The deposition was carried out at room temperature, and the sputtering power on individual MoS2 and MoTe2 targets were varied to obtain films with different compositions. Investigation with X-ray photoelectron spectroscopy confirmed the formation of Mo-Te and Mo-S bonds after post-deposition annealing (PDA), and one of the samples exhibited composition ratio of Mo:S:Te = 1:1.2:0.8 and 1:1.9:0.1 achieving 1:2 ratio of metal to chalcogen. Bandgap of MoS1.2Te0.8 and MoS1.9Te0.1 was evaluated with Tauc plot analysis from the extinction coefficient obtained by spectroscopic ellipsometry measurements. The obtained bandgaps were 1.0 eV and 1.3 eV. The resulting bandgap was lower than that of bulk MoS2 and higher than that of bulk MoTe2 suggesting mixture of both materials was achieved by co-sputtering.


Corresponding author


Hide All
1. Yoon, Y., Ganapathi, K., and Salahuddin, S., Nano Lett. 11, 3768 (2011).
2. Mak, K. F., Lee, C., Hone, J., Shan, J., and Heinz, T. F., Phys. Rev. Lett. 105, 136805 (2010).
3. He, K. Poole, C., Mak, K. F., and Shan, J., Nano Lett. 13, 2931 (2013).
4. Liu, H., Antwi, K. K. A., Chua, S., and Chi, D., Nanoscale 6, 624 (2014).
5. Mann, J., Ma, Q., Odenthal, P. M., Isarraraz, M., Le, D., Preciado, E., Barroso, D., Yamaguchi, K., von Son Palacio, G., Nguyen, A., Tran, T., Wurch, M., Nguyen, A., Klee, V., Bobek, S., Sun, D., Heinz, T. F., Rahman, T. S., Kawakami, R., and Bartels, L., Adv. Mater. 26, 1399 (2014).
6. Mak, K. F., He, K., Shan, J., and Heinz, T. F., Nat. Nanotechnol. 7, 494 (2012).
7. Xiao, D., Liu, G.B., Feng, W., Xu, X., and Yao, W., Phys. Rev. Lett. 108, 196802 (2012).
8. Zheng, Z. Q., Zhang, T. M., Yao, J. D., Zhang, Y., Xu, J. R., and Yang, G. W., Nanotechnol. 27, 225501 (2016)
9. Zheng, Z. Q., Yao, J. D., and Yang, G. W., J. Mater. Chem. C. 4, 8094 (2016)
10. Komsa, H. P. and Krasheninnikov, A. V., J. Phys. Chem. Lett. 3, 3652 (2012).
11. Ishihara, S., Hibino, Y., Sawamoto, N., Ohashi, T., Matsuura, K., Machida, H., Ishikawa, M., Wakabayashi, H., and Ogura, A., ECS J. Solid State Sci. Technol. 5, Q3012 (2016).
12. Ohashi, T., Suda, K., Ishihara, S., Sawamoto, N., Yamaguchi, S., Matsuura, K., Kakushima, K., Sugii, N., Nishiyama, A., Kataoka, Y., Natori, K., Tsutsui, K., Iwai, H. Ogura, A., and Wakabayashi, H., Jpn. J. Appl. Phys. 54, 04DN08 (2015).
13. Tao, J. Q., Chai, J. W., Lu, X., Wong, L. M., Wong, T. I., Pan, J. S., Xiong, Q. H., Chi, D. Z. and Wang, S., J., Nanoscale 7, 2497 (2015)
14. Ling, Z. P., Yang, R., Chai, J. W., Wang, S. J., Leong, W. S., Tong, Y., Lei, D., Zhow, Q., Gong, X., Chi, D. Z., and Ang, K. –W., OPTICS EXPRESS 23, 13580 (2015)
15. Terrones, H., Corro, E. D., Feng, S., Poumirol, J. M., Rhodes, D., Smirnov, D., Pradhan, N. R., Lin, Z., Nguyen, M. A. T., Elías, A. L., Mallouk, T. E., Balicas, L., Pimenta, M. A., Terrones, M., Sci. Rep. 4, 4215 (2014)
16. Kamiya, T., Nomura, K., and Hosono, H., Phys. Status. Solidi A 206, 860 (2009)
17. Shaaban, E. R., Abd El-Sadek, M. S., El-Hagary, M., and Yahia, I. S., Phys. Scr. 86, 015702 (2012).
18. Ishihara, S., Hibino, Y., Sawamoto, N., Suda, K., Ohashi, T., Matsuura, K., Machida, H., Ishikawa, M., Sudoh, H., Wakabayashi, H. and Ogura, A., Jpn. J. Appl. Phys. 55, 04EJ07 (2016)
19. Lezama, I. G., Ubaldini, A., Longobardi, M., Giannini, E., Renner, C., Kuzmenko, A. B., and Morpurgo, A. F., 2D Materials 1, 2 (2014).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed