Skip to main content Accessibility help

Interfacial Study on the Functionalization of Continuously Exfoliated Graphite in a PA66 Using High Shear Elongational Flow.

  • Justin W. Hendrix (a1), Thomas Nosker (a2), Jennifer Lynch-Branzoi (a2) and Thomas Emge (a3)


Graphene has been publicized as the game changing material of this millennium. As research continues to expand our knowledge of this 2D semimetal, the properties at the interface have become an increasingly important characteristic. Translating graphene’s strength at the nanoscale to the macroscale is suggested by functionalizing the graphene, creating a favourable interfacial morphology to adhere. An interfacial morphology that is able to form primary chemical bonds is ideal, providing the best mechanical property performance. We proposed a method of creating a graphene reinforced polymer matrix composite from flake mineral graphite in-situ, using high shear elongational flow to produces these conditions. In our process we were able to identify chemical bonding at graphene’s surface, which developed into newly created interfacial morphologies. These morphologies lead to an increase in mechanical properties while providing an improved stress transfer between graphene and its containing matrix. Our work sheds light on a solvent free route to scalable high strength graphene composites.


Corresponding author


Hide All
[1]Yan, Z., Nika, D.L., Balandin, A.A., Thermal properties of graphene and few-layer graphene: applications in electronics, IET Circuits, Devices & Systems 9(1) (2015) 4-12.
[2]Frank, I.W., Tanenbaum, D.M., van der Zande, A.M., McEuen, P.L., Mechanical properties of suspended graphene sheets, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25(6) (2007) 2558.
[3]Di Bernardo, A., Millo, O., Barbone, M., Alpern, H., Kalcheim, Y., Sassi, U., Ott, A.K., De Fazio, D., Yoon, D., Amado, M., Ferrari, A.C., Linder, J., Robinson, J.W.A., p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor, Nature Communications 8 (2017) 14024.
[4]Perreault, F., de Faria, A.F., Elimelech, M., Environmental applications of graphene-based nanomaterials, Chemical Society Reviews 44(16) (2015) 5861-5896.
[5]Talat, M., Srivastava, O., Deployment of New Carbon Nanostructure: Graphene for Drug Delivery and Biomedical Applications, Advances in Nanomaterials, Springer2016, pp. 383-395.
[6]Schadler, L.S., Giannaris, S.C., Ajayan, P.M., Load transfer in carbon nanotube epoxy composites, Applied Physics Letters 73(26) (1998) 3842-3844.
[7]Akhina, H., et al. , Development of plasticized poly (vinyl chloride)/reduced graphene oxide nanocomposites for energy storage applications. Polymer Testing, 2019. 73: p. 250-257.
[8]Hofmann, D., Thomann, R., Mülhaupt, R., Thermoplastic SEBS Elastomer Nanocomposites Reinforced with Functionalized Graphene Dispersions, Macromolecular Materials and Engineering 303(1) (2018) 1700324.
[9]Rafiq, R., Cai, D., Jin, J., Song, M., Increasing the toughness of nylon 12 by the incorporation of functionalized graphene, Carbon 48(15) (2010) 4309-4314.
[10]Bao, H., Pan, Y., Ping, Y., Sahoo, N.G., Wu, T., Li, L., Li, J., Gan, L.H., Chitosan-Functionalized Graphene Oxide as a Nanocarrier for Drug and Gene Delivery, Small 7(11) (2011) 1569-1578.
[11]Zhou, S., Bongiorno, A., Origin of the Chemical and Kinetic Stability of Graphene Oxide, Scientific Reports 3 (2013) 2484.
[12]Nosker, T., Lynch, J., Hendrix, J., Kear, B., Chiu, G., & Tse, S. (2018). U.S. Patent No. 9,896,565. Washington, DC: U.S. Patent and Trademark Office.
[13]Hendrix, Justin, et al. "Evaluation of exfoliated graphite to graphene in polyamide 66 using novel high shear elongational flow." Polymers 10.12 (2018): 1399.
[14]Elaissari, A., Colloidal Polymers: Synthesis and Characterization, CRC Press 2003 p.245-284.
[15]Kudin, K.N., Ozbas, B., Schniepp, H.C., Prud’homme, R.K., Aksay, I.A., Car, R., Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets, Nano Letters 8(1) (2008) 36-41.
[16]Fang, M., Wang, K., Lu, H., Yang, Y., Nutt, S., Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites, Journal of Materials Chemistry 19(38) (2009) 7098-7105.
[17]Das, A., Chakraborty, B., Sood, A.K., Raman spectroscopy of graphene on different substrates and influence of defects, Bulletin of Materials Science 31(3) (2008) 579-584.
[18]Jiang, D.-e., Sumpter, B.G., Dai, S., Unique chemical reactivity of a graphene nanoribbon’s zigzag edge, The Journal of Chemical Physics 126(13) (2007) 134701.
[19]Gong, L., Young, R.J., Kinloch, I.A., Haigh, S.J., Warner, J.H., Hinks, J.A., Xu, Z., Li, L., Ding, F., Riaz, I., Jalil, R., Novoselov, K.S., Reversible Loss of Bernal Stacking during the Deformation of Few-Layer Graphene in Nanocomposites, ACS Nano 7(8) (2013) 7287-7294.
[20]Velasco-Santos, C., et al. , Improvement of Thermal and Mechanical Properties of Carbon Nanotube Composites through Chemical Functionalization. Chemistry of Materials, 2003. 15(23): p. 4470-4475.
[21]Mark, H.F., Encyclopedia of Polymer Science and Technology, Concise. 2013: Wiley; p. 505-506.


Interfacial Study on the Functionalization of Continuously Exfoliated Graphite in a PA66 Using High Shear Elongational Flow.

  • Justin W. Hendrix (a1), Thomas Nosker (a2), Jennifer Lynch-Branzoi (a2) and Thomas Emge (a3)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed