Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T02:56:32.477Z Has data issue: false hasContentIssue false

Integrating 2D electron gas oxide heterostructures on silicon using rare-earth titanates

Published online by Cambridge University Press:  02 February 2016

Eric N. Jin*
Affiliation:
Center for Research on Interface Structures and Phenomena and Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
Lior Kornblum
Affiliation:
Center for Research on Interface Structures and Phenomena and Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
Charles H. Ahn
Affiliation:
Center for Research on Interface Structures and Phenomena and Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06511, USA
Frederick J. Walker
Affiliation:
Center for Research on Interface Structures and Phenomena and Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
*
*Corresponding author: eric.jin@yale.edu
Get access

Abstract

Integrating oxide heterostructures on silicon has the potential to leverage the multifunctionalities of oxide systems into semiconductor device technology. We present the growth and characterization of two-dimensional electron gas (2DEG) oxide systems LaTiO3/SrTiO3 (LTO/STO) and GdTiO3/SrTiO3 (GTO/STO) on Si(001). We show interface-based conductivity in the oxide films and measure high electron densities ranging from ∼9 × 1013 cm-2 interface-1 in GTO/STO/Si to ∼9 × 1014 cm-2 interface-1 in LTO/STO/Si. We attribute the higher measured carrier density in the LTO/STO films to a higher concentration of interface-bound oxygen vacancies arising from a lower oxygen partial pressure during growth. These vacancies donate conduction electrons and result in an increased measured carrier density. The integration of such 2DEG oxide systems with silicon provides a bridge between the diverse electronic properties of oxide systems and the established semiconductor platform and points toward new devices and functionalities.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ohtomo, A. and Hwang, H. Y., Nature 427, 423426 (2004).Google Scholar
Shibuya, K., Ohnishi, T., Kawasaki, M., Koinuma, H., and Lippmaa, M., Jpn. J. Appl. Phys., Part 2 43, L1178 (2004).Google Scholar
Moetakef, P., Zhang, J. Y., Kozhanov, A., Jalan, B., Seshadri, R., Allen, S. J., and Stemmer, S., Appl. Phys. Lett. 98, 112110 (2011).CrossRefGoogle Scholar
Zhang, J. Y., Jackson, C. A., Chen, R., Raghavan, S., Moetakef, P., Balents, L., and Stemmer, S., Phys. Rev. B 89, 075140 (2014).CrossRefGoogle Scholar
Jackson, C. A., Zhang, J. Y., Freeze, C. R., and Stemmer, S., Nat. Commun. 5, 4258 (2014)CrossRefGoogle Scholar
Xu, P., Phelan, D., Jeong, J. S., Mkhoyan, K. A., and Jalan, B., Appl. Phys. Lett. 104, 082109 (2014).Google Scholar
Seo, S. S. A., Choi, W. S., Lee, H. N., Yu, L., Kim, K. W., Bernhard, C., and Noh, T. W., Phys. Rev. Lett. 99, 266801 (2007).Google Scholar
Chang, Y. J., Moreschini, L., Bostwick, A., Gaines, G. A., Kim, Y. S., Walter, A. L., Freelon, B., Tebano, A., Horn, K., and Rotenberg, E., Phys. Rev. Lett. 111, 126401 (2013).Google Scholar
Janotti, A., Bjaalie, L., Gordon, L., and Van de Walle, C. G., Phys. Rev. B 86, 241108 (2012).CrossRefGoogle Scholar
McKee, R. A., Walker, F. J., and Chisholm, M. F., Phys. Rev. Lett. 81, 30143017 (1998).CrossRefGoogle Scholar
Reiner, J. W., Kolpak, A. M., Segal, Y., Garrity, K. F., Ismail-Beigi, S., Ahn, C. H., and Walker, F. J., Adv. Mater. 22, 2919 (2010).Google Scholar
Jin, E. N., Kornblum, L., Kumah, D. P., Zou, K., Broadbridge, C. C., Ngai, J. H., Ahn, C. H., and Walker, F. J., APL Mater. 2, 116109 (2014).CrossRefGoogle Scholar
Kornblum, L., Jin, E. N., Kumah, D. P., Ernst, A. T., Broadbridge, C. C., Ahn, C. H., and Walker, F. J., Appl. Phys. Lett. 106(20), 201602 (2015).CrossRefGoogle Scholar
Kornblum, L., Jin, E. N., Shoron, O., Boucherit, M., Rajan, S., Ahn, C. H., and Walker, F. J., J. Appl. Phys. 118, 105301 (2015).Google Scholar
Gu, X., Lubyshev, D., Batzel, J., Fastenau, J. M., Liu, W. K., Pelzel, R., Magana, J. F., Ma, Q., Wang, L. P., Zhang, P., and Rao, V. R., J. Vac. Sci. Technol., B 27, 11951199 (2009).Google Scholar
Ohtomo, A., Muller, D. A., Grazul, J. L., and Hwang, H. Y., Appl. Phys. Lett. 80, 3922 (2002).CrossRefGoogle Scholar
Annadi, A., Huang, Z., Gopinadhan, K., Wang, X. R., Srivastava, A., Liu, Z. Q., Ma, H. H., Sarkar, T. P., Venkatesan, T., and Ariando, Phys. Rev. B 87, 201102 (2013).Google Scholar
Liu, Z. Q., Li, C. J., , W. M., Huang, X. H., Huang, Z., Zeng, S. W., Qiu, X. P., Huang, L. S., Annadi, A., Chen, J. S., Coey, J. M. D., Venkatesan, T., and Ariando, Phys. Rev. X 3, 021010 (2013).Google Scholar
Fête, A., Cancellieri, C., Li, D., Stornaiuolo, D., Caviglia, A. D., Gariglio, S., and Triscone, J.-M., Appl. Phys. Lett. 106, 051604 (2015).Google Scholar