Skip to main content Accessibility help

Influence of Inclusion of Apatite-based Microparticles on Osteogenic Cell Pheonotype and Behavior

  • Laura Datko Williams (a1), Amanda Farley (a1), Will McAllister (a1), J. Matthew Mann (a2), Joseph Kolis (a2), Marian S. Kennedy (a3) and Delphine Dean (a1)...


The proximity of minerals found in human hard tissues may influence cell phenotype. Since cells respond to a range of environmental cues, this study sought to identify the influence of two apatite-based microparticles, hydroxyapatite (HA) and fluoroapatite (FA), upon dental and bone cells. After bone marrow stromal cells (BMSCs), 7F2 osteoblasts and dental pulp stem cells (DPSCs) were plated into media with or without HA or FA particles, the cells were analyzed for alkaline phosphatase (ALP) production, collagen I production, osteocalcin production, and mineralization for two weeks. The BMSCs and DPSCs in media without any microparticles produced more ALP compared to those with microparticles from Day 5 forward. In addition, the collagen I and osteocalcin production in cultures without microparticles was higher than in cultures containing either HA or FA particles. While some studies have shown increased osteogeonic differentiation in the presence of mineral particles, those studies used nanoparticles that were able to be internalized by the cells and were smaller than the microparticles used in this study.


Corresponding author


Hide All
1.Mitchell, H.H., Hamilton, T.S., Steggerda, F.R., Bean, H.W.: The chemical composition of the adult human body and its bearing on the biochemistry of growth. J. Biol. Chem. 158, 625637 (1945).
2.Müller, F., Zeitz, C., Mantz, H., Ehses, K.-H., Soldera, F., Schmauch, J., Hannig, M., Hüfner, S., Jacobs, K.: Elemental depth profiling of fluoridated hydroxyapatite: saving your dentition by the skin of your teeth? Langmuir. 26, 1875018759 (2010).
3.Abraham, C.M.: Suppl 1: A Brief Historical Perspective on Dental Implants, Their Surface Coatings and Treatments. Open Dent. J. 8, 50 (2014).
4.Oliveira, H.L., Da Rosa, W.L.O., Cuevas-Suárez, C.E., Carreño, N.L. V, da Silva, A.F., Guim, T. N., Dellagostin, O.A., Piva, E.: Histological Evaluation of Bone Repair with Hydroxyapatite: A Systematic Review. Calcif. Tissue Int. 1-14 (2017).
5.Zaccaria, L., Tharakan, S.J., Altermatt, S.: Hydroxyapatite ceramic implants for cranioplasty in children: a single-center experience. Child’s Nerv. Syst. 33, 343348 (2017).
6.Zanotti, B., Zingaretti, N., Verlicchi, A., Robiony, M., Alfieri, A., Parodi, P.C.: Cranioplasty: Review of Materials. J. Craniofac. Surg. 27, 20612072 (2016).
7.Fernandez-Pareja, A., Hernandez-Blanco, E., Perez-Maceda, J.M., Rubio, V.J.R., Palazuelos, J.H., Dulmau, J.M.: Prevention of Osteoporosis. Four-Year Follow-Up of a Cohort of Postmenopausal Women Treated with an Ossein-Hydroxyapatite Compound. Orthop. Traumatol. PROSTHETICS. 76-81 (2009).
8.Tuukkanen, J., Nakamura, M.: Hydroxyapatite as a nanomaterial for advanced tissue engineering and drug therapy. Curr. Pharm. Des. (2017).
9.Zhang, W., Walboomers, X.F., Van Osch, G.J.V.M., van Den Dolder, J., Jansen, J.A.: Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow. Tissue Eng. Part A. 14, 285294 (2008).
10.Deligianni, D.D., Katsala, N.D., Koutsoukos, P.G., Missirlis, Y.F.: Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials. 22, 8796 (2000).
11.Cai, Y., Tang, R.: Calcium phosphate nanoparticles in biomineralization and biomaterials. J. Mater. Chem. 18, 37753787 (2008).
12.Fischer, E.M., Layrolle, P., Van Blitterswijk, C.A., De Bruijn, J.D.: Bone formation by mesenchymal progenitor cells cultured on dense and microporous hydroxyapatite particles. Tissue Eng. 9, 11791188 (2003).
13.Liu, Y., Wang, G., Cai, Y., Ji, H., Zhou, G., Zhao, X., Tang, R., Zhang, M.: In vitro effects of nanophase hydroxyapatite particles on proliferation and osteogenic differentiation of bone marrow-derived mesenchymal stem cells. J. Biomed. Mater. Res. Part A. 90, 10831091 (2009).
14.Saldana, L., Sánchez-Salcedo, S., Izquierdo-Barba, I., Bensiamar, F., Munuera, L., Vallet-Regi, M., Vilaboa, N.: Calcium phosphate-based particles influence osteogenic maturation of human mesenchymal stem cells. Acta Biomater. 5, 12941305 (2009).
15.Arinzeh, T.L., Tran, T., Mcalary, J., Daculsi, G.: A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials. 26, 36313638 (2005).
16.Dunne, C.F., Twomey, B., Kelly, C., Simpson, J.C., Stanton, K.T.: Hydroxyapatite and fluorapatite coatings on dental screws: effects of blast coating process and biological response. J. Mater. Sci. Mater. Med. 26, 114 (2015).
17.Moshaverinia, M., Borzabadi-Farahani, A., Sameni, A., Moshaverinia, A., Ansari, S.: Effects of incorporation of nano-fluorapatite particles on microhardness, fluoride releasing properties, and biocompatibility of a conventional glass ionomer cement (GIC). Dent. Mater. J. 35, 817821 (2016).
18.Liu, J., Jin, T., Chang, S., Czajka-Jakubowska, A., Zhang, Z., Nör, J.E., Clarkson, B.H.: The effect of novel fluorapatite surfaces on osteoblast-like cell adhesion, growth, and mineralization. Tissue Eng. Part A. 16, 29772986 (2010).
19.Bhadang, K.A., Holding, C.A., Thissen, H., McLean, K.M., Forsythe, J.S., Haynes, D.R.: Biological responses of human osteoblasts and osteoclasts to flame-sprayed coatings of hydroxyapatite and fluorapatite blends. Acta Biomater. 6, 15751583 (2010).
20.Liu, J., Jin, T.C., Chang, S., Czajka-Jakubowska, A., Clarkson, B.H.: Adhesion and growth of dental pulp stem cells on enamel-like fluorapatite surfaces. J. Biomed. Mater. Res. Part A. 96, 528534 (2011).
21.Hoch, A.I., Leach, J.K.: Concise review: optimizing expansion of bone marrow mesenchymal stem/stromal cells for clinical applications. Stem Cells Transl. Med. 3, 643652 (2014).
22.Thompson, D.L., Lum, K.D., Nygaard, S.C., Kuestner, R.E., Kelly, K.A., Gimble, J.M., Moore, E.E.: The derivation and characterization of stromal cell lines from the bone marrow of p53-/- mice: new insights into osteoblast and adipocyte differentiation. J. Bone Miner. Res. 13, 195204 (1998).
23.Liu, H., Gronthos, S., Shi, S.: Dental Pulp Stem Cells. In: Enzymology, I.K. and , R.L.B.T.-M. in (ed.) Adult Stem Cells. pp. 99113. Academic Press (2006).
24.Yang, X., Zhang, W., van den Dolder, J., Walboomers, X.F., Bian, Z., Fan, M., Jansen, J.A.: Multilineage potential of STRO-1+ rat dental pulp cells in vitro. J. Tissue Eng. Regen, M ed. 1, 128135 (2007).
25.Gronthos, S., Mankani, M., Brahim, J., Robey, P.G., Shi, S.: Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. U. S. A. 97, 1362513630 (2000).
26.Shi, S., Bartold, P.M., Miura, M., Seo, B.M., Robey, P.G., Gronthos, S.: The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod. Craniofac. Res. 8, 191199 (2005).
27.Papagerakis, P., Berdal, A., Mesbah, M., Peuchmaur, M., Malaval, L., Nydegger, J., Simmer, J., Macdougall, M.: Investigation of osteocalcin, osteonectin, and dentin sialophosphoprotein in developing human teeth. Bone. 30, 377385 (2002).
28.Sethu, S.N., Namashivayam, S., Devendran, S., Nagarajan, S., Tsai, W.-B., Narashiman, S., Ramachandran, M., Ambigapathi, M.: Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering. Int. J. Biol. Macromol. 98, 6774 (2017).
29.Huang, Y., Zhou, G., Zheng, L., Liu, H., Niu, X., Fan, Y.: Micro-/nano-sized hydroxyapatite directs differentiation of rat bone marrow derived mesenchymal stem cells towards an osteoblast lineage. Nanoscale. 4, 24842490 (2012).
30.Weissenböck, M., Stein, E., Undt, G., Ewers, R., Lauer, G., Turhani, D.: Particle size of hydroxyapatite granules calcified from red algae affects the osteogenic potential of human mesenchymal stem cells in vitro. Cells Tissues Organs. 182, 7988 (2006).
31.Sun, J., Liu, H., Hong-Shong Chang, W., Li, J., Lin, F., Tai, H.: Influence of hydroxyapatite particle size on bone cell activities: an in vitro study. J. Biomed. Mater. Res. An Off. J. Soc. Biomater. Japanese Soc. Biomater. Aust. Soc. Biomater. 39, 390397 (1998).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed