Skip to main content Accessibility help

II-VI Material Integration With Silicon for Detector and PV Applications

  • T.A. Gessert (a1), E. Colegrove (a2), B. Stafford (a2), R. Kodama (a1), Wei Gao (a2), H.R. Moutinho (a3), D. Kuciauskas (a3), R.C. Reedy (a3), T.M. Barnes (a3) and S. Sivananthan (a2)...


Heteroepitaxial growth of high-quality II-VI-alloy materials on Si substrates is a well-established commercial growth process for infrared (IR) detector devices. However, it has only recently been recognized that these same processes may have important applications for production of high-efficiency photovoltaic devices. This submission reviews the process developments that have enabled effective heteroepitaxy of II-VI alloy materials on lattice-mismatched Si for IR detectors as a foundation to describe recent efforts to apply these insights to the fabrication of multijunction Si/CdZnTe devices with ultimate conversion efficiencies >40%. Reviewed photovoltaic studies include multijunction Si/CdZnTe devices with conversion efficiency of ∼17%, analysis of structural and optoelectrical quality of undoped CdTe epilayer films on Si, and the effect that a Te-rich growth environment has on the structural and optoelectronic quality of both undoped and As-doped heteroepitaxial CdTe.


Corresponding author


Hide All
1 Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D., “Solar Cell Efficiency Tables (Version 45),” Prog. in Photovoltaics: Research and Applications 23 19 (2015).
2 Kodama, R., EPIR Inc. Personal Communication.
3 Garland, J.W., Biegala, T., Carmody, M., Gilmore, C., Sivananthan, S., “Next-Generation Multijunction Solar Cells: The Promise of II-VI Materials,” J. Appl. Phys. 109 102423 (2011).
5 Yang, J-H, Yin, W-J., Park, J-S., Burst, J., Metzger, W.K., Gessert, T., Barnes, T., and Wei, S-H., “Enhanced p-type Dopability of P and As in CdTe Using Non-Equlibrium Thermal Processing, JK. J. Appl. Phys., 118, 025102 (2015).
6 Carmody, M., Mallick, S., Margetis, J., Kodama, R., Biegala, T., Xu, D., Bechmann, P., Garland, J.W., and Sivanathan, S., “Single-Crystal II-VI on Si Single-Junction and Tandem Solar Cells,” Appl. Phys. Lett. 96, 153502 (2010).
7 Rujirawat, S., Almeida, L.A., Chen, Y.P., Sivananthan, S., and Smith, D.J., “High quality large-area CdTe(211)B on Si(211) grown by molecular beam epitaxy,” Appl. Phys. Lett., 71, pp. 18101812, 1997.
8 Smith, D.J., Tsen, S.C.Y., Chandrasekhar, D., Crozier, P.A., Rujirawat, S., Brill, G., Chen, Y.P., Sporken, R., and Sivananthan, S., “Growth and characterization of CdTe/Si heterostructures –Effect of substrate orientation,” Materials Science and Engineering: B, 77, pp. 93100, 2000.
9 Kuciauskas, D., Farrell, S., Dippo, P., Mosley, J., Moutinho, H., Li, J.V., Allende Motz, A.M., Kanevce, A., Zaunbrecher, K., Gessert, T.A., Levi, D., Metzger, W.K., Colegrove, E., and Sivananthan, S., “Charge carrier transport and recombination in heteroepitaxial CdTe,” J. Appl. Physics, vol. 116(12), pp. 123108, 2014.
10 Gessert, T.A., Dhere, R., Kuciauskas, D., Moseley, J., Moutinho, H., Romero, M.J., Al-Jassim, M., and Colegrove, E., Kodama, R., and Sivanathan, S., “Development of CdTe on Si Heteroepilayers for Controlled PV Materials and Device Studies,” Mater. Res. Soc. Symp. Proc. 1538 243248 (2013).
11 Kanevce, A., Kuciauskas, D., Gessert, T., Levi, D.H., and Albin, D., “Impact of Interface Recombination on Time Resolved Photoluminescence (TRPL) Decays in CdTe Solar cells (Numerical Simulation Analysis),” Proc. 38th IEEE Photovoltaic Specialists Conf., Austin, TX (2012).
12 Gessert, T.A., Wei, S.-H., Ma, J., Albin, D.S., Dhere, R.G., Duenow, J.N., Kuciauskas, D., Kanevce, A., Barnes, T.M., and Moutinho, H.R., “Research Strategies Toward Improving Thin-Film CdTe Photovoltaic Devices Beyond 20% Conversion Efficiency,” Solar Energy Materials and Solar Cells, 119, pp. 149155 (2013).
13 Ma, J., Kuciauskas, D., Albin, D., Bhattacharya, R., Reese, M., Barnes, T., Li, J.V., Gessert, T., and Wei, S.-H., “Dependence of the Minority-Carrier Lifetime on the Stoichiometry of CdTe Using Time Resolved Photoluminescence and First Principles Calculations,” Phys. Rev. Lett. 111 067402, (2013).
14 Strevel, N., Trippel, L., Kotarba, C., and Khan, I., “Improvements in CdTe Module Reliability and Long-Term Degradation through Advances in Construction and Device Innovation,” Photovolt. Int. 22. pp. 6674 (2013).
15 Wei, S-H. and Zhang, S.B., “Chemical Trends of Defect Formation and Doping Limit in II-VI Semiconductors: The Case of CdTe,” Phys. Rev. B 66 155211 (2002).
16 Farrell, S., Barnes, T., Metzger, W.K., Park, J.H., Kodama, R., and Sivananthan, S., “In Situ Arsenic Doping of CdTe/Si by Molecular Beam Epitaxy,J. Elect. Mater. 44(9) p. 3202 (2015).
17 Park, J.H., Farrell, S., Kodama, R., Blissett, C., Wang, X., Colegrove, E., Metezger, W.K., Gessert, T.A., and Sivananthan, S., Incorporation and Activation of Arsenic Dopant in Single Crystal CdTe on Si by MBE,“ J. Electron. Mater. 43(8) p. 2998 (2014).
18 Barnes, T.M., Myers, T.H., Edirisooriya, M., Ogedengbe, O.S., Kuciauskas, D., Harvey, S., Gorman, B.P., Pool, V. =L., Ablekim, T., Lynn, K.G., Saunbrecher, K., Seyedmohammadi, S., and Malik, R., “Dopant Incorporation and Activation in Epitaxial CdTe, Proc. 42 nd Photovolt. Spec. Conf, New Orleans (2015).
19 Burton, G.L., Diercks, D.R., and Gorman, B.P., “Dopant and Interfacial Analysis of Epitaxial CdTe using Atom Probe Tomography”, Microscopy and Microanalysis, S2 (2015).
20 Chen, A. C., Zandian, M., Edwall, D. D., De Wames, R. E., Wijewarnasuriya, P. S., Arias, J. M., Sivananthan, S., Berding, M., Sher, A.. “MBE Growth and Characterization of In Situ Arsenic Doped HgCdTe.” J. Elect. Mater. 27(6) pp. 595599 (1998).
21 Gessert, T.A., Barnes, T.M., Colegrove, E., Stafford, B., Farrell, S., Moutinho, H.. U.S. Patent Application No. 62/173,487 and 62/236,047.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed