Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T13:17:10.767Z Has data issue: false hasContentIssue false

Highly Sensitive Organic Photoconductor Using Boron Sub-2,3-naphthalocyanine as a Red-sensitive Film for Stack-type Image Sensors

Published online by Cambridge University Press:  28 December 2015

Toshikatsu Sakai*
Affiliation:
NHK Science and Technology Research Laboratories, 1-10-15 Kinuta, Setagaya-ku, Tokyo, Japan.
Hokuto Seo
Affiliation:
NHK Science and Technology Research Laboratories, 1-10-15 Kinuta, Setagaya-ku, Tokyo, Japan.
Tomomi Takagi
Affiliation:
NHK Science and Technology Research Laboratories, 1-10-15 Kinuta, Setagaya-ku, Tokyo, Japan.
Hiroshi Ohtake
Affiliation:
NHK Science and Technology Research Laboratories, 1-10-15 Kinuta, Setagaya-ku, Tokyo, Japan.
Get access

Abstract

Boron sub-2,3-naphthalocyanine chloride (SubNc) was investigated as a potential red-sensitive organic photoconductive film (OPF). A photoconductive cell was fabricated, and its current–voltage characteristics, both with and without light irradiation, and external quantum efficiency (EQE) were determined. The structure of the photoconductive cell was as follows, with thicknesses in nm given in parentheses: glass substrate/In–Zn–O (100)/spiro-2CBP (30)/SubNc (50)/Alq3 (30)/Al (50) (spiro-2CBP = 2,7-bis(carbazol-9-yl)-9,9-spirobifluorene; Alq3 = tris(8-hydroxyquinolinato)aluminum). The spiro-2CBP and Alq3 layers were inserted between the SubNc layer and the electrodes to block dark current injection. The three organic layers were successively deposited by evaporation in a vacuum on the In–Zn–O-patterned substrate. SubNc film absorbed light in the red region well, with an absorption peak at 695 nm. The EQE of the cell reached 80% when the applied bias was 15 V. In addition, the blocking layers effectively suppressed dark current in the OPF, which corresponded to a current density of 20 nA/cm2 at 15 V. These results indicate that SubNc is a promising candidate as a red-sensitive OPF.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tang, C. W., Appl. Phys. Lett. 48, 183 (1986).Google Scholar
Oregan, B. and Gratzel, M., Nature, 353, 737 (1991).Google Scholar
Yu, G., Gao, J., Hummelen, J. C., Wudl, F., and Heeger, A. J., Science, 270, 1789 (1995).Google Scholar
Small, C. E., Chen, S., Subbiah, J., Amb, C. M., Tsang, S. W., Lai, T. H., and Reynolds, J. R., Nat. Photonics., 6, 115 (2012).Google Scholar
Li, G., Zhu, R., and Yang, Y., Nat. Photonics., 6, 153 (2012).Google Scholar
Zukawa, T., Naka, S., Okada, H., and Onnagawa, H., J. Appl. Phys., 91, 1171 (2002).Google Scholar
Kudo, K. and Moriizumi, T., Appl. Phys. Lett., 39, 609 (1981).Google Scholar
Street, R. A., Mulato, M., Lau, R., Ho, J., Graham, J., Popovic, Z., and Hor, J., Appl. Phys. Lett., 78, 4193 (2001).Google Scholar
Nausieda, I., Ryu, K., Kymissis, I., Akinwande, A. I., Bulovic, V., and Sodini, C. G., IEEE Trans. Electron Devices, 55, 527 (2008).Google Scholar
Aihara, S., Hirano, Y., Tajima, T., Tanioka, K., Abe, M., Saito, N., Kamata, N., and Terunuma, D., Appl. Phys. Lett., 82, 511 (2003).Google Scholar
Seo, H., Aihara, S., Watabe, T., Ohtake, H., Kubota, M., and Egami, N., Jpn. J. Appl. Phys., 46 L1240 (2007).Google Scholar
Aihara, S., Seo, S, H., Namba, M., Watabe, T., Ohtake, H., Kubota, M., Egami, N., Hiramatsu, T., Matsuda, T., Furuta, M., Nitta, H., and Hirao, T., IEEE Trans. Electron Devices, 56, 2570 (2009).Google Scholar
Seo, H., Aihara, S., Watabe, T., Ohtake, H., Sakai, T., Kubota, M., Egami, N., Hiramatsu, T., Matsuda, T., Furuta, M., and Hirao, T., Jpn. J. Appl. Phys., 50, 024103 (2011).Google Scholar
Verreet, B., Schols, S., Cheyns, D., Rand, B. P., Gommans, H., Aernouts, T., Heremans, P., and Genoe, J., J. Mater. Chem., 19, 5295 (2009).Google Scholar
Cheyns, D., Rand, B. P., and Heremans, P., Appl. Phys. Lett., 97, 033301 (2010).Google Scholar
Chen, G., Sasabe, H., Sano, T., Wang, X. F., Hong, Z., Kido, J., and Yang, Y., Nanotechnology, 24, 484007 (2013).Google Scholar