Skip to main content Accessibility help
×
Home

High Performance and Chlorine Resistant Carbon Nanotube/Aromatic Polyamide Reverse Osmosis Nanocomposite Membrane

  • Rodolfo Cruz-Silva (a1), Shigeki Inukai (a1), Takumi Araki (a1) (a2), Aaron Morelos-Gomez (a1), Josue Ortiz-Medina (a1), Kenji Takeuchi (a1) (a3), Takuya Hayashi (a1) (a3), Akihiko Tanioka (a3), Syogo Tejima (a1) (a2), Toru Noguchi (a1) (a3), Mauricio Terrones (a3) (a4) and Morinobu Endo (a1) (a3)...

Abstract

Efficient water desalination constitutes a major challenge for the next years and reverse osmosis membranes will play a key role to achieve this target. In this work, a high-performance reverse osmosis nanocomposite membrane was prepared by interfacial polymerization in presence of multiwalled carbon nanotubes. The effect of carbon nanotubes on the chlorine resistance, antifouling and desalination performance of the nanocomposite membranes was studied. We found that the addition of carbon nanotubes not only improved the membrane performance in terms of flow and antifouling, but also inhibited the chlorine degradation of these membranes. Several reports have acknowledged the benefits of adding carbon nanotubes to aromatic PA nanocomposite membranes, but little attention has been paid to the mechanisms related to the improvement of flow rate, selectivity and chlorine tolerance. We carried out a comprehensive study of the chemical and physical effects of carbon nanotubes on the fully crosslinked polyamide network. The chemical structure, chlorine resistance and membrane degradation was studied by several analytical techniques, permeation and fouling studies, whereas the microstructure of the nanocomposite was studied by small and wide angle X-ray scattering, high resolution transmission electron microscopy, and molecular dynamics. We found that the addition of the nanotube affects the interfacial polymerization, resulting in a polymer network with smaller pore size and higher sodium and chlorine rejection. We simulated the hydration of the membrane in seawater and found that the radial distribution function of water confined in the pores of the nanocomposite membrane exhibited smaller clusters of water molecules, thus suggesting a dense membrane structure. We analysed the network mobility and found that the nanotube provides mechanical stability to the polymer matrix. This study presents solid evidence towards more efficient and robust reverse osmosis membranes using carbon nanotubes as mechanical reinforcing and chlorine protection additive.

Copyright

Corresponding author

References

Hide All
1. Ding, M. X., Szymczyk, A., Goujon, F., Soldera, A. and Ghoufi, A., Journal of Membrane Science, 2014, 458, 236244.
2. Harder, E., Walters, D. E., Bodnar, Y. D., Faibish, R. S. and Roux, B., Journal of Physical Chemistry B, 2009, 113, 1017710182.
3. Kiani, F., Khosravi, T., Moradi, F., Rahbari, P., Aghaei, M. J., Arabi, M., Tajik, H. and Kalantarinejad, R., Journal of Computational and Theoretical Nanoscience, 2014, 11, 12371243.
4. Kolev, V. and Freger, V., Polymer, 2014, 55, 14201426.
5. Kotelyanskii, M. J., Wagner, N. J. and Paulaitis, M. E., Journal of Membrane Science, 1998, 139, 116.
6. Kotelyanskii, M. J., Wagner, N. J. and Paulaitis, M. E., Computational and Theoretical Polymer Science, 1999, 9, 301306.
7. Moon, J. H., Katha, A. R., Pandian, S., Kolake, S. M. and Han, S., Journal of Membrane Science, 2014, 461, 8995.
8. Murad, S. and Powles, J. G., Chemical Physics Letters, 1994, 225, 437440.
9. Murad, S., Adsorption-Journal of the International Adsorption Society, 1996, 2, 95101.
10. Sun, C. Z., Boutilier, M. S. H., Au, H., Poesio, P., Bai, B. F., Karnik, R. and Hadjiconstantinou, N. G., Langmuir, 2014, 30, 675682.
11. Xiang, Y., Liu, Y., Mi, B. and Leng, Y., Langmuir, 2014, 30, 90989106.
12. Di Leo, J. M. and Maranon, J., Journal of Molecular Structure-Theochem, 2004, 709, 163166.
13. Gong, X. J., Li, J. Y., Lu, H. J., Wan, R. Z., Li, J. C., Hu, J. and Fang, H. P., Nature Nanotechnology, 2007, 2, 709712.
14. Holt, J. K., Park, H. G., Wang, Y. M., Stadermann, M., Artyukhin, A. B., Grigoropoulos, C. P., Noy, A. and Bakajin, O., Science, 2006, 312, 10341037.
15. Ma, M. D., Shen, L. M., Sheridan, J., Liu, J. Z., Chen, C. O. and Zheng, Q. S., Physical Review E, 2011, 83, 7.
16. Nicolai, A., Sumpter, B. G. and Meuniera, V., Physical Chemistry Chemical Physics, 2014, 16, 86468654.
17. Jeong, B. H., Hoek, E. M. V., Yan, Y. S., Subramani, A., Huang, X. F., Hurwitz, G., Ghosh, A. K. and Jawor, A., Journal of Membrane Science, 2007, 294, 17.
18. Kazemimoghadam, M., Desalination and Water Treatment, 2011, 30, 5157.
19. Lee, K. P., Arnot, T. C. and Mattia, D., Journal of Membrane Science, 2011, 370, 122.
20. da Silva, M. K., Tessaro, I. C. and Wada, K., Journal of Membrane Science, 2006, 282, 375382.
21. Ettori, A., Gaudichet-Maurin, E., Schrotter, J. C., Aimar, P. and Causserand, C., Journal of Membrane Science, 2011, 375, 220230.
22. Kim, S. G., Hyeon, D. H., Chun, J. H., Chun, B. H. and Kim, S. H., Desalination and Water Treatment, 2013, 51, 63386345.
23. Kwon, Y. N. and Leckie, J. O., Journal of Membrane Science, 2006, 283, 2126.
24. Endo, M., Takeuchi, K., Noguchi, T., Asano, Y., Fujisawa, K., Kim, Y. A., Hayashi, T., Ueki, H. and Iinou, S., Industrial & Engineering Chemistry Research, 2010, 49, 97989802.
25. Inukai, S., Cruz-Silva, R., Ortiz-Medina, J., Morelos-Gomez, A., Takeuchi, K., Hayashi, T., Tanioka, A., Araki, T., Tejima, S., Noguchi, T., Terrones, M. and Endo, M., Scientific Reports, 2015, 5, 10.
26. Luo, Y., Harder, E., Faibish, R. S. and Roux, B., Journal of Membrane Science, 2011, 384, 19.
27. Araki, T., Cruz-Silva, R., Tejima, S., Takeuchi, K., Hayashi, T., Inukai, S., Noguchi, T., Tanioka, A., Kawaguchi, T., Terrones, M., Endo, M., ACS Applied Materials \& Interfaces, 2015, 7, 2456624575.
28. Chan, W. F., Chen, H. Y., Surapathi, A., Taylor, M. G., Hao, X. H., Marand, E. and Johnson, J. K., Acs Nano, 2013, 7, 53085319.
29. Zhao, H. Y., Qiu, S., Wu, L. G., Zhang, L., Chen, H. L. and Gao, C. J., Journal of Membrane Science, 2014, 450, 249256.
30. Shen, J. N., Yu, C. C., Ruan, H. M., Gao, C. J. and Van der Bruggen, B., Journal of Membrane Science, 2013, 442, 1826.

Keywords

High Performance and Chlorine Resistant Carbon Nanotube/Aromatic Polyamide Reverse Osmosis Nanocomposite Membrane

  • Rodolfo Cruz-Silva (a1), Shigeki Inukai (a1), Takumi Araki (a1) (a2), Aaron Morelos-Gomez (a1), Josue Ortiz-Medina (a1), Kenji Takeuchi (a1) (a3), Takuya Hayashi (a1) (a3), Akihiko Tanioka (a3), Syogo Tejima (a1) (a2), Toru Noguchi (a1) (a3), Mauricio Terrones (a3) (a4) and Morinobu Endo (a1) (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed