Skip to main content Accessibility help
×
Home

Functionalized Polythiophene Copolymers for Electronic Biomedical Devices

  • Samadhan Nagane (a1), Peter Sitarik (a1), Yuhang Wu (a1), Quintin Baugh (a1), Shrirang Chhatre (a1), Junghyun Lee (a1) and David C. Martin (a1)...

Abstract

We continue to investigate the design, synthesis, and characterization of electrically and ionically active conjugated polythiophene copolymers for integrating a variety of biomedical devices with living tissue. This paper will describe some of our most recent results, including the development of several new monomers that can tailor the surface chemistry, adhesion, and biointegration of these materials with neural cells. Our efforts have focused on copolymers of 3,4 ethylenedioxythiophene (EDOT), functionalized variants of EDOT (including EDOT-acid and the trifunctional EPh), and dopamine (DOPA). The resulting PEDOT-based copolymers have electrical, optical, mechanical, and adhesive properties that can be precisely tailored by fine tuning the chemical composition and structure. Here we present results on EDOT-dopamine bifunctional monomers and their corresponding polymers. We discuss the design and synthesis of an EDOT-cholesterol that combines the thiophene with a biological moiety known to exhibit surface-active behaviour. We will also introduce EDOT-aldehyde and EDOT-maleimide monomers and show how they can be used as the starting point for a wide variety of functionalized monomers and polymers.

Copyright

Corresponding author

*(Email: milty@udel.edu)

References

Hide All
[1]Martin, D. C., Molecular Design, Synthesis, and Characterization of Conjugated Polymers for Interfacing Electronic Biomedical Devices with Living Tissue. MRS Communications, 5 (2015) 131153.
[2]Mantione, D., Del Agua, I., Sanchez-Sanchez, A., & Mecerreyes, D., Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics. Polymers, 9 (2017) 354. https://doi.org/10.3390/polym9080354.
[3]Cui, X., Lee, V. A., Raphael, Y., Wiler, J. A., Hetke, J. F., Anderson, D. J., & Martin, D. C., Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. Journal of Biomedical Materials Research, 56 (2001) 261272.
[4]Cui, X. & Martin, D. C., Electrochemical Deposition and Characterization of Poly(3,4-ethylenedioxythiophene) on Neural Microelectrode Arrays. Sensors and Actuators B: Chemical, 89 (2003) 92102.
[5]Kozai, T. D. Y., Catt, K., Gugel, Z. V., Olafsson, V. T., Vazquez, A. L., & Cui, X. T., Mechanical failure modes of chronically implanted planer silicon-based neural probes for laminar recording. Biomaterials, 37 (2014) 2539.
[6]Bu, H.-B., Götz, G., Reinold, E., Vogt, A., Schmid, S., Blanco, R., Segura, J. L., & Bäuerle, P., “Click”-functionalization of conducting poly(3,4-ethylenedioxythiophene) (PEDOT). Chemical Communications, (2008) 13201322. https://doi.org/10.1039/B718077B.
[7]Feldman, K. & Martin, D. C., Functional Conducting Polymers via Thiol-ene Chemistry. Biosensors & Bioelectronics, 2 (2012) 305317.
[8]Wei, B., Ouyang, L., Liu, J., & Martin, D. C., Post-polymerization functionalization of poly(3,4-propylenedioxythiophene) (PProDOT) via thiol–ene “click” chemistry. J. Mater. Chem. B, 3 (2015) 50285034. https://doi.org/10.1039/C4TB02033B.
[9]Povlich, L. K., Cho, J. C., Leach, M. K., Kim, J., Corey, J. M., & Martin, D. C., Synthesis, Copolymerization, and Peptide-Modification of Carboxylic Acid-Functionalized 3,4-ethylenedioxythiophene (EDOTacid) for Neural Electrode Interfaces. Biochimica et Biophysica Acta, 1830 (2012) 42884293.
[10]Bhagwat, N., Kiick, K. L., & Martin, D. C., Electrochemical deposition and characterization of carboxylic-acid functionalized PEDOT copolymers. Journal of Materials Research, 29 (2014) 28352844.
[11]Bhagwat, N., Murray, R. E., Shah, S. I., Kiick, K. L., & Martin, D. C., Biofunctionalization of PEDOT films with laminin-derived peptides. Acta Biomaterialia, (2016). https://doi.org/10.1016/j.actbio.2016.05.016.
[12]Wei, B., Liu, J., Ouyang, L., Kuo, C.-C., & Martin, D. C., Significant enhancement of PEDOT thin film adhesion to inorganic substrates with EDOT-acid. ACS Applied Materials \& Interfaces, 7 (2015) 1538815394.
[13]Kim, J., Kim, B., Anand, C., Mano, A., Zaidi, J. S. M., Ariga, K., You, J., Vinu, A., & Kim, E., A Single-Step Synthesis of Electroactive Mesoporous ProDOT-Silica Structures. Angewandte Chemie International Edition, 54 (2015) 84078410. https://doi.org/10.1002/anie.201502498.
[14]Hai, W., Goda, T., Takeuchi, H., Yamaoka, S., Horiguchi, Y., Matsumoto, A., & Miyahara, Y., Specific Recognition of Human Influenza Virus with PEDOT Bearing Sialic Acid-Terminated Trisaccharides. ACS Applied Materials & Interfaces, 9 (2017) 1416214170. https://doi.org/10.1021/acsami.7b02523.
[15]Nagane, S. S., Kuhire, S. S., Jadhav, U. A., Dhanmane, S. A., & Wadgaonkar, P. P., Design and Synthesis of Aromatic Polyesters Bearing Pendant Clickable Maleimide Groups. Journal of Polymer Science Part A: Polymer Chemistry, 57 (2019) 630640. https://doi.org/10.1002/pola.29303.
[16]Nagane, S. S., Kuhire, S. S., Mane, S. R., & Wadgaonkar, P. P., Partially bio-based aromatic poly(ether sulfone)s bearing pendant furyl groups: synthesis, characterization and thermo-reversible cross-linking with a bismaleimide. Polymer Chemistry, 10 (2019) 10891098. https://doi.org/10.1039/C8PY01477A.
[17]Maher, D. M., Nagane, S. S., Jadhav, U. A., Salunkhe, P. H., Tawade, B. V., & Wadgaonkar, P. P., A new cardo bisphenol monomer containing pendant azido group and the resulting aromatic polyesters. Journal of Polymer Science Part A: Polymer Chemistry, 57 (2019) 15161526. https://doi.org/10.1002/pola.29414.
[18]Dolci, E., Froidevaux, V., Joly-Duhamel, C., Auvergne, R., Boutevin, B., & Caillol, S., Maleimides As a Building Block for the Synthesis of High Performance Polymers. Polymer Reviews, 56 (2016) 512556. https://doi.org/10.1080/15583724.2015.1116094.
[19]Decker, C. & Bianchi, C., Photocrosslinking of a maleimide functionalized polymethacrylate. Polymer International, 52 (2003) 722732. https://doi.org/10.1002/pi.1119.
[20]Gaina, C., Gaina, V., & Ciobanu, C., Thermal and mechanical characterization of maleimide-functionalized copoly(urethane-urea)s. Journal of Applied Polymer Science, 113 (2009) 32453254. https://doi.org/10.1002/app.30092.
[21]Hai, W., Goda, T., Takeuchi, H., Yamaoka, S., Horiguchi, Y., Matsumoto, A., & Miyahara, Y., Specific Recognition of Human Influenza Virus with PEDOT Bearing Sialic Acid-Terminated Trisaccharides. ACS Applied Materials & Interfaces, 9 (2017) 1416214170. https://doi.org/10.1021/acsami.7b02523.
[22]Ouyang, L., Wei, B., Kuo, C., Pathak, S., Farrell, B., & Martin, D. C., Enhanced PEDOT adhesion on solid substrates with electrografted P(EDOT-NH 2 ). Science Advances, 3 (2017) e1600448. https://doi.org/10.1126/sciadv.1600448.
[23]Delafresnaye, L., Schmitt, C. W., Barner, L., & Barner‐Kowollik, C., A Photochemical Ligation System Enabling Solid‐Phase Chemiluminescence Read‐Out. Chemistry – A European Journal, 25 (2019) 1253812544. https://doi.org/10.1002/chem.201901858.

Keywords

Functionalized Polythiophene Copolymers for Electronic Biomedical Devices

  • Samadhan Nagane (a1), Peter Sitarik (a1), Yuhang Wu (a1), Quintin Baugh (a1), Shrirang Chhatre (a1), Junghyun Lee (a1) and David C. Martin (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed