Skip to main content Accessibility help

From 2-D Nanocrystalline Films to 1-D Nanomaterials: An Overview

  • Chunxu Pan (a1) (a2), Jun Wu (a1) (a2), Gongsheng Song (a1) (a2), Chengzhi Luo (a1) (a2), Delong Li (a2) (a3), Yueli Liu (a2) (a4) and Qiang Fu (a2)...


In the past few years, our group worked on the area of transformation from the two-dimensional (2-D) nanocrystalline films to one-dimensional (1-D) nanomaterials by using thermal oxidation. In this paper, we overview the research work on the controllable growth processes, transformation phenomena, growth mechanisms and applications. In general, the preparation process includes the following steps: 1) prepare a pure metal nanocrystalline film via a pulse electro – deposition; 2) grow variant 1-D nanomaterials, such as carbon nanotubes (CNTs), carbon nanofibers (CNFs), and 1-D metal oxide nanoneedles involving ZnO, CuO and Fe3O4, etc. by using this film as catalyst. This process exhibits the following features: 1) the 1-D nanomaterials grow according to “base growth” model and no residual catalyst exists at the tip of the products; 2) the diameter of the 1-D nanomaterials can be controlled by controlling grain sizes of the 2-D films through adjusting pulse electro-deposition parameters; 3) it is more easily to get the 1-D nanomaterials with large area, uniform, vertical alignment and good shape on the substrates. We propose a “solid state based-up diffusion growth mechanism” for growth of the 1-D metal oxide nanoneedles, and “base growth model” for the 1-D carbon nanomaterials. The physical properties, such as Field emission and magnetics, of the 1-D metal oxide nanoneedles were studied, which showed desired values. In addition, we couple the ZnO nanoneedles with NiO, TiO2, graphene, Au nanoparticles, etc. for enhancing photocatalytic properties in the areas of environmental purification.


Corresponding author


Hide All
1.Choy, K. I., Prog. in Mater. Sci. 48, 57 (2003).
2.Xia, A. and Zhuang, H. Z., Chin. J. Semiconductor. 23, 593 (2002).
3.Pal, M. and Chakravorty, D., Phys. E 5, 200 (2000).
4.Erb, U., Palumbo G, G. and Aust, K. T., Nanostruct. Films and Coat. 78, 11 (2000).
5.Jiang, X., Shi, A., Wang, Y., Li, Y. and Pan, C., Nanoscale 3, 3573 (2011).
6.Otten, C. J., Lourie, O. R., Yu, M. F., Cowley, J. M. and Dyer, M. J., J. Am. Chem. Soc. 124, 4564 (2002).
7.Cheng, C. W., Xu, G. Y. and Zhang, H. Q., Mater. Chem. Phys. 97, 448 (2006).
8.Gong, D., Grimes, C. A. and Varghese, O. K., J. Mater. Res. 16, 3331 (2001).
9.Fu, Y. Y., Wang, R. M. and Xu, J., Chem. Phys. Letts. 350, 481 (2001).
10.Thess, A., Lee, R. and Nikolaev, P., Science 273, 483 (1996).
11.Wang, Y. W., Zhang, L.D. and Wang, G. Z., J. Cry. Growth 234, 171 (2002).
12.Longtin, R., Fauteux, C., Goduguchinta, R. and Pegna, J., Thin Solid Films, 515, 2958 (2007).
13.Liu, Y., Fu, Q. and Pan, C., Carbon 43, 2264 (2005).
14.Liu, Y., Pan, C., Dai, Y. and Chen, W., Mater. Res. Bull. 43, 3397 (2008).
15.Liu, Y., Liao, L., Li, J. and Pan, C., J. Phys. Chem. C 111, 5050 (2007).
16.Liu, Y., Liao, L., Pan, C., Li, J., Dai, Y. and Chen, W., J. Phys. Chem. C 112, 902 (2008).
17.Liu, Y., Pan, C., Dai, Y. and Chen, W., Mater. Letts. 62, 2783 (2008).
18.Yu, W. and Pan, C., Mater. Chem. Phys. 115, 74 (2009).
19.Li, X., Zhang, J., Yuan, Y., Liao, L. and Pan, C., J. Appl. Phys. 108, 024308 (2010).
20.Han, W. Q., Fan, S. S. and Li, Q. Q., Appl. Phys. Letts. 71, 2271 (1997).
21.Han, W. Q., Fan, S. S. and Li, Q. Q., Science 277, 1287 (1997).
22.Lu, L., Shen, Y. F. and Chen, X. H., Science 304, 222 (2004).
23.Pan, C., Liu, Y., Cao, F., Wang, J. and Ren, Y., Micron, 35, 461 (2004).
24.Pan, C., Liu, Y. and Cao, F., J. Mater. Sci. Letts. 40, 1293 (2005).
25.Yeon, S. C., Sung, W. Y., Kim, W. J., Lee, S. M., Lee, H. Y. and Kim, Y. H., J. Vacuum Sci. & Technol. B 24, 940 (2006).
26.Kim, C. H., Chun, H. J. and Kim, D. S., Appl. Phys. Letts. 89, 223103 (2006).
27.Hsu, L. C., Li, Y. Y. and Lo, C. G., J. Phys. D: Appl. Phys. 41, 185003 (2008).
28.Hsu, L. C. and Li, Y. Y., Appl. Phys. Letts. 93, 083113 (2008).
29.Wang, N., Cai, Y. and Zhang, R.Q., Mater. Sci. Eng. R, 60, 1 (2008)
30.Srivastava, H., Tiwari, P., Srivastava, A. K. and Nandedkar, R. V., J. Appl. Phys. 102, 054303 (2007).
31.Li, D., Jiang, X., Zhang, Y., Zhang, B. and Pan, C., J. Mater. Res. 28, 507 (2013).
32.Li, D., Wu, W., Zhang, Y., Liu, L. and Pan, C., J. Mater. Sci. 49, 1854 (2014).
33.Li, D., Zhang, Y., Wu, W. and Pan, C., RSC Adv. 4, 18186 (2014).
34.Luo, C., Li, D., Wu, W., Zhang, Y. and Pan, C., RSC Adv. 4, 3090 (2014).
35.Wu, J., Luo, C., Li, D., Fu, Q. and Pan, C., J. Mater. Sci. 52, 1285 (2017).
36.Lu, J., Wang, H. H., Peng, D. L., Chen, T., Dong, S. J. and Chang, Y., Phys. E 78, 41 (2016).
37.Li, P., Wei, Z., Wu, T., Peng, Q. and Li, Y. D., J. Am. Chem. Soc. 133, 5660 (2011).



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed