Skip to main content Accessibility help

Free-standing Sandwich Structure MoO3-rGO Composite Film Electrode for Flexible Supercapacitors

  • Le Yu (a1) (a2), Shixi Zhao (a1), Qilong Wu (a1) (a2), Xiaoxiao Zheng (a1) (a2), Yifeng Wang (a1) (a2) and Guodan Wei (a3)...


The research of high-performance flexible supercapacitors is urgent due to the rapid development of wearable and portable electronics. The key challenge is the preparation of flexible electrodes with high areal capacitance since electrodes are the most important part of supercapacitors. Compared to those conventional electrodes loading with typical flexible substrates such as textile, PET, paper et al, free-standing electrodes have many advantages such as more efficient capacity contribution, solidly embedded active materials and thinner thickness. Herein, we have successfully fabricated a novel sandwich-like structure free-standing MoO3-rGO (reduced graphene oxide) composite film electrode for flexible supercapacitors using simple vacuum filtration method followed by HI reduction process. The obtained MoO3-rGO composite film electrode shows excellent electrochemical performance, whose areal specific capacitance reaches 8972 mF·cm-2 (1.5 mA·cm-2). Here, MoO3 provides pseudocapacitance and rGO provides double-layer capacitance. After cycling for 2000 cycles, the capacity retention is 86.7%, showing good cycle stability. Besides, the as-prepared composite film has good flexibility and will not break easily during following bending, rolling, folding or twisting steps. This study has been approved to be an important step for the high-performance electrode design for free-standing flexible supercapacitors.


Corresponding author


Hide All
[1]Dubal, D. P., Chodankar, N. R., Kim, D.-H. and Gomez-Romero, P., Chem. Soc. Rev. 47, 2065-2129 (2018).
[2]Huang, R., Huang, M., Li, X., An, F., Koratkar, N. and Yu, Z.-Z., Adv. Mater. 30, 1707025 (2018).
[3]Simon, P., Gogotsi, Y. and Dunn, B., Science 343, 1210-1211 (2014).
[4]Gonzalez, A., Goikolea, E., Andoni Barrena, J. and Mysyk, R., Renew. Sust. Energ. Rev. 58, 1189-1206 (2016).
[5]Dong, L., Xu, C., Li, Y., Pan, Z., Liang, G., Zhou, E., Kang, F. and Yang, Q.-H., Adv. Mater. 28, 9313-9319 (2016).
[6]Sumboja, A., Foo, C. Y., Wang, X. and Lee, P. S., Adv. Mater. 25, 2809-2815 (2013).
[7]Xiao, X., Peng, Z., Chen, C., Zhang, C., Beidaghi, M., Yang, Z., Wu, N., Huang, Y., Miao, L., Gogotsi, Y. and Zhou, J., Nano Energy 9, 355-363 (2014).
[8]Yang, Y., Huang, Q., Niu, L., Wang, D., Yan, C., She, Y. and Zheng, Z., Adv. Mater. 29, 1606679 (2017).
[9]Conway, B. E. and Pell, W. G., J. Solid State Electr. 7, 637-644 (2003).
[10]Raza, W., Ali, F., Raza, N., Luo, Y., Kim, K.-H., Yang, J., Kumar, S., Mehmood, A. and Kwon, E. E., Nano Energy 52, 441-473 (2018).
[11]Augustyn, V., Simon, P. and Dunn, B., Energy Environ. Sci. 7, 1597-1614 (2014).
[12]Lu, Q.-L., Zhao, S.-X., Chen, C.-K., Wang, X., Deng, Y.-F. and Nan, C.-W., J. Mater. Chem. A 4, 14560-14566 (2016).
[13]Kim, H.-S., Cook, J. B., Lin, H., Ko, J. S., Tolbert, S. H., Ozolins, V. and Dunn, B., Nat. Mater. 16, 454-459 (2017).
[14]Duy Van, P., Patil, R. A., Yang, C.-C., Yeh, W.-C., Liou, Y. and Ma, Y.-R., Nano Energy 47, 105-114 (2018).
[15]Balendhran, S., Deng, J., Ou, J. Z., Walia, S., Scott, J., Tang, J., Wang, K. L., Field, M. R., Russo, S., Zhuiykov, S., Strano, M. S., Medhekar, N., Sriram, S., Bhaskaran, M. and Kalantar-zadeh, K., Adv. Mater. 25, 109-114 (2013).
[16]Kumar, V., Sumboja, A., Wang, J., Bhavanasi, V., Viet Cuong, N. and Lee, P. S., Chem. Mater. 26, 5533-5539 (2014).
[17]Pei, S., Zhao, J., Du, J., Ren, W. and Cheng, H.-M., Carbon 48, 4466-4474 (2010).
[18]Wang, G., Zhang, L. and Zhang, J., Chem. Soc. Rev. 41, 797-828 (2012).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed