Skip to main content Accessibility help
×
Home

Ferroic twin domains in metal halide perovskites

  • Yongtao Liu (a1) (a2), Alex Belianinov (a1), Liam Collins (a1), Roger Proksch (a3), Anton V. Ievlev (a1), Bin Hu (a2), Sergei V. Kalinin (a1) and Olga S. Ovchinnikova (a1)...

Abstract

An emerging family of materials—metal halide perovskites (MHPs)—have made incredible achievements in optoelectronics in the past decade. Owing to its potential role in optoelectronic properties, the ferroic state of MHPs has been investigated by lots of researchers. Here, we review the literature regarding investigations into possible ferroic behaviors in MHPs. We summarize the recent discoveries of ferroic twin domains in MHPs. We examine the ferroelasticity and the ferroelectricity of these twin domains. Several properties relevant to the twin domains are critically analyzed, including crystallographic structure, mechanical variation, chemical variation, etc. Finally, we discussed the effects of these domains on materials’ optoelectronic properties and their potential roles in photovoltaic action.

Copyright

Corresponding author

*Author to whom correspondence should be addressed. Olga S. Ovchinnikova Center for Nanophase Materials Sciences, Oak Ridge National Laboratory 1 Bethel Valley Rd Oak Ridge TN, 37831-6493 ovchinnikovo@ornl.gov.

Footnotes

Hide All

Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy. The publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Footnotes

References

Hide All
1Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 1 (2019).
2Xu, W. et al. Efficient perovskite solar cells fabricated by Co partially substituted hybrid perovskite. Advanced Energy Materials 8, 1703178 (2018).
3Liu, T. et al. Cesium Halides-Assisted Crystal Growth of Perovskite Films for Efficient Planar Heterojunction Solar Cells. Chemistry of Materials 30, 5264-5271 (2018).
4Zhou, T. et al. Highly Efficient and Stable Solar Cells Based on Crystalline Oriented 2D/3D Hybrid Perovskite. Advanced Materials, 1901242 (2019).
5Lai, H. et al. Two-dimensional Ruddlesden–Popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%. Journal of the American Chemical Society 140, 11639-11646 (2018).
6Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245 (2018).
7Yi, N. et al. Tailoring the Performances of Lead Halide Perovskite Devices with Electron‐Beam Irradiation. Advanced Materials 29, 1701636 (2017).
8Xu, W. et al. Room‐Temperature‐Operated Ultrasensitive Broadband Photodetectors by Perovskite Incorporated with Conjugated Polymer and Single‐Wall Carbon Nanotubes. Advanced Functional Materials 28, 1705541 (2018).
9Long, G. et al. Spin control in reduced-dimensional chiral perovskites. Nature Photonics 12, 528 (2018).
10Long, G. et al. Theoretical Prediction of Chiral 3D Hybrid Organic–Inorganic Perovskites. Advanced Materials, 1807628 (2019).
11NREL: Best Research-Cell Efficiencies (2019). Available at https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190703.pdf (accessed 12 August 2019).
12Rossi, D. et al. On the importance of ferroelectric domains for the performance of perovskite solar cells. Nano Energy 48, 20-26 (2018).
13Liu, Y. et al. Dynamic behavior of CH3NH3PbI3 perovskite twin domains. Applied Physics Letters 113, 072102 (2018).
14Hermes, I. M. et al. Ferroelastic fingerprints in methylammonium lead iodide perovskite. The Journal of Physical Chemistry C 120, 5724-5731 (2016).
15Strelcov, E. et al. CH3NH3PbI3 perovskites: Ferroelasticity revealed. Science advances 3, e1602165 (2017).
16Liu, Y. et al. Chemical nature of ferroelastic twin domains in CH 3 NH 3 PbI 3 perovskite. Nature materials 17, 1013 (2018).
17Liu, Y. et al. Light-Ferroic Interaction in Hybrid Organic Inorganic Perovskites. Advanced Optical Materials, 1901451 (2019).
18Liu, S. et al. Ferroelectric domain wall induced band gap reduction and charge separation in organometal halide perovskites. The journal of physical chemistry letters 6, 693-699 (2015).
19Bi, F. et al. Enhanced photovoltaic properties induced by ferroelectric domain structures in organometallic halide perovskites. The Journal of Physical Chemistry C 121, 11151-11158 (2017).
20Pecchia, A., Gentilini, D., Rossi, D., Auf der Maur, M. & Di Carlo, A. Role of ferroelectric nanodomains in the transport properties of perovskite solar cells. Nano letters 16, 988-992 (2016).
21Montero-Alejo, A. L., Menéndez-Proupin, E., Palacios, P., Wahnón, P. & Conesa, J. Ferroelectric Domains May Lead to Two-Dimensional Confinement of Holes, but not of Electrons, in CH3NH3PbI3 Perovskite. The Journal of Physical Chemistry C 121, 26698-26705 (2017).
22Rashkeev, S. N., El-Mellouhi, F., Kais, S. & Alharbi, F. H. Domain walls conductivity in hybrid organometallic perovskites and their essential role in CH 3 NH 3 PbI 3 solar cell high performance. Scientific reports 5, 11467 (2015).
23Morozovska, A. et al. Thermodynamics of electromechanically coupled mixed ionic-electronic conductors: Deformation potential, Vegard strains, and flexoelectric effect. Physical Review B 83, 195313 (2011).
24Zhang, H. et al. Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals. Nature communications 10, 1088 (2019).
25Kim, D. et al. Light- and bias-induced structural variations in metal halide perovskites. Nature Communications 10, 444 (2019).
26Kim, D. et al. Probing Facet Dependent Surface Defects in MAPbI3 Perovskite Single Crystals. The Journal of Physical Chemistry C (2019).
27Collins, L. et al. Time resolved surface photovoltage measurements using a big data capture approach to KPFM. Nanotechnology 29, 445703 (2018).
28Ahmadi, M. et al. Environmental Gating and Galvanic Effects in Single Crystals of Organic–Inorganic Halide Perovskites. ACS applied materials & interfaces 11, 14722-14733 (2019).
29Weller, M. T., Weber, O. J., Henry, P. F., Di Pumpo, A. M. & Hansen, T. C. Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. Chemical Communications 51, 4180-4183 (2015).
30Defaÿ, E. Integration of ferroelectric and piezoelectric thin films: concepts and applications for microsystems. (John Wiley & Sons, 2013).
31Wadhawan, V. K. Ferroelasticity and related properties of crystals. Phase Transitions: A Multinational Journal 3, 3-103 (1982).
32Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic chemistry 52, 9019-9038 (2013).
33Fang, H. H. et al. Photophysics of organic–inorganic hybrid lead iodide perovskite single crystals. Advanced Functional Materials 25, 2378-2385 (2015).
34Glasser, L. Lattice energies of crystals with multiple ions: a generalized Kapustinskii equation. Inorganic Chemistry 34, 4935-4936 (1995).
35Yaffe, O. et al. Local polar fluctuations in lead halide perovskite crystals. Physical review letters 118, 136001 (2017).
36Leguy, A. M. et al. The dynamics of methylammonium ions in hybrid organic–inorganic perovskite solar cells. Nature communications 6, 7124 (2015).
37Miyata, K. et al. Large polarons in lead halide perovskites. Science advances 3, e1701217 (2017).
38Sewvandi, G. A., Kodera, K., Ma, H., Nakanishi, S. & Feng, Q. Antiferroelectric Nature of CH 3 NH 3 PbI 3− x Cl x Perovskite and Its Implication for Charge Separation in Perovskite Solar Cells. Scientific reports 6, 30680 (2016).
39Collins, L., Liu, Y., Ovchinnikova, O. & Proksch, R. Quantitative Electromechanical Atomic Force Microscopy. ACS Nano 13, 8055-8066 (2019).
40Vorpahl, S. M. et al. Orientation of ferroelectric domains and disappearance upon heating methylammonium lead triiodide perovskite from tetragonal to cubic phase. ACS Applied Energy Materials 1, 1534-1539 (2018).
41Rothmann, M. U. et al. Direct observation of intrinsic twin domains in tetragonal CH 3 NH 3 PbI 3. Nature communications 8, 14547 (2017).
42Röhm, H., Leonhard, T., Hoffmann, M. J. & Colsmann, A. Ferroelectric domains in methylammonium lead iodide perovskite thin-films. Energy & Environmental Science 10, 950-955 (2017).
43Leonhard, T. et al. Probing the Microstructure of Methylammonium Lead Iodide Perovskite Solar Cells. Energy Technology 7, 1800989 (2019).
44MacDonald, G. A. et al. Determination of the true lateral grain size in organic–inorganic halide perovskite thin films. ACS applied materials & interfaces 9, 33565-33570 (2017).
45Huang, B. et al. Ferroic domains regulate photocurrent in single-crystalline CH 3 NH 3 PbI 3 films self-grown on FTO/TiO 2 substrate. npj Quantum Materials 3, 30 (2018).
46Arlt, G. Twinning in ferroelectric and ferroelastic ceramics: stress relief. Journal of materials Science 25, 2655-2666 (1990).
47Jesse, S., Baddorf, A. P. & Kalinin, S. V. Dynamic behaviour in piezoresponse force microscopy. Nanotechnology 17, 1615 (2006).
48Kalinin, S. V., Rar, A. & Jesse, S. A decade of piezoresponse force microscopy: progress, challenges, and opportunities. IEEE transactions on ultrasonics, ferroelectrics, and frequency control 53, 2226-2252 (2006).
49Vasudevan, R. K., Balke, N., Maksymovych, P., Jesse, S. & Kalinin, S. V. Ferroelectric or non-ferroelectric: why so many materials exhibit “ferroelectricity” on the nanoscale. Applied Physics Reviews 4, 021302 (2017).
50Balke, N. et al. Differentiating ferroelectric and nonferroelectric electromechanical effects with scanning probe microscopy. ACS nano 9, 6484-6492 (2015).
51Liu, Y. et al. Reply to: On the ferroelectricity of CH3NH3PbI3 perovskites. Nature materials, DOI: 10.1038/s41563-019-0481-6 (2019).
52Kalinin, S. V. & Bonnell, D. A. Effect of phase transition on the surface potential of the BaTiO 3 (100) surface by variable temperature scanning surface potential microscopy. Journal of Applied Physics 87, 3950-3957 (2000).
53Abplanalp, M., Eng, L. & Günter, P. Mapping the domain distribution at ferroelectric surfaces by scanning force microscopy. Applied Physics A: Materials Science & Processing 66, S231-S234 (1998).
54Liu, Y. et al. Multi-Model Imaging of Local Chemistry and Ferroic Properties of Hybrid Organic-Inorganic Perovskites. Microscopy and Microanalysis 25, 2076-2077 (2019).
55Känzig, W. in Solid State Physics Vol. 4 1-197 (Elsevier, 1957).
56Chen, B. et al. Large electrostrictive response in lead halide perovskites. Nature materials 17, 1020-1026 (2018).
57Kalinin, S. V., Kim, Y., Fong, D. D. & Morozovska, A. N. Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures. Reports on Progress in Physics 81, 036502 (2018).
58Ahmadi, M. et al. Exploring anomalous polarization dynamics in organometallic halide perovskites. Advanced Materials 30, 1705298 (2018).

Keywords

Ferroic twin domains in metal halide perovskites

  • Yongtao Liu (a1) (a2), Alex Belianinov (a1), Liam Collins (a1), Roger Proksch (a3), Anton V. Ievlev (a1), Bin Hu (a2), Sergei V. Kalinin (a1) and Olga S. Ovchinnikova (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed