Skip to main content Accessibility help

Fabrication of Hollow Metal Microneedle Arrays Using a Molding and Electroplating Method

  • Philip R Miller (a1), Matthew Moorman (a1), Ryan D Boehm (a2), Steven Wolfley (a1), Victor Chavez (a1), Justin T. Baca (a3) (a4), Carlee Ashley (a1) (a3) (a4) (a2), Igal Brener (a1), Roger J Narayan (a2) and Ronen Polsky (a1)...


The need for hollow microneedle arrays is important for both drug delivery and wearable sensor applications; however, their fabrication poses many challenges. Hollow metal microneedle arrays residing on a flexible metal foil substrate were created by combining additive manufacturing, micromolding, and electroplating approaches in a process we refer to as electromolding. A solid microneedle with inward facing ledge was fabricated with a two photon polymerization (2PP) system utilizing laser direct write (LDW) and then molded with polydimethylsiloxane. These molds were then coated with a seed layer of Ti/Au and subsequently electroplated with pulsed deposition to create hollow microneedles. An inward facing ledge provided a physical blocking platform to restrict deposition of the metal seed layer for creation of the microneedle bore. Various ledge sizes were tested and showed that the resulting seed layer void could be controlled via the ledge length. Mechanical properties of the PDMS mold was adjusted via the precursor ratio to create a more ductile mold that eliminated tip damage to the microneedles upon removal from the molds. Master structures were capable of being molded numerous times and molds were able to be reused. SEM/EDX analysis showed that trace amounts of the PDMS mold were transferred to the metal microneedle upon removal. The microneedle substrate showed a degree of flexibility that withstood over 100 cycles of bending from side to side without damaging. Microneedles were tested for their fracture strength and were capable of puncturing porcine skin and injecting a dye.


Corresponding author


Hide All
1.Kim, Y. C., Park, J. H., and Prausnitz, M. R., Adv. Drug Deliv. Rev. 64, 1547 (2012).
2.El-Laboudi, A., Oliver, N. S., Cass, A., and Johnston, D., Diabetes Technol. Ther. 15, 101-115 (2013).
3.Kim, Y. C. and Prausnitz, M. R., Drug Deliv. Transl. Res. 1, 7 (2011).
4.Miller, P. R., Narayan, R. J., and Polsky, R., J. Mater. Chem. B 4, 1379 (2016).
5.Vrdoljak, A., Vaccine: Dev. Ther. 3, 47 (2013).
6.Miller, P. R., Skoog, S. A., Edwards, T. L., Lopez, D. M., Wheeler, D. R., Arango, D. C., Xiao, X., Brozik, S. M., Wang, J., Polsky, R., and Narayan, R. J., Talanta 88, 739 (2012).
7.Jina, A., Tierney, M. J., Tamada, J. A., McGill, S., Desai, S., Chua, B., Chang, A., and Christiansen, M., J. Diabetes Sci. Technol. 8, 483 (2014).
8.Norman, J. J., Choi, S. O., Tong, N. T., Aiyar, A. R., Patel, S. R., Prausnitz, M. R., and Allen, M. G., Biomed. Microdev. 15, 203 (2013).
9.Gardeniers, H.J.G.E., Luttge, R., Berenschot, E. J. W., de Boer, M. J., Yeshurun, S. Y., Hefetz, M., van’t Oever, R., and van den Berg, A., J. Microelectromech. Syst. 12, 855 (2003).
10.Paik, S. J., Byun, S., Lim, J. M., a Park, Y., Lee, A., Chung, S., Chang, J., Chun, K., and Cho, D., Sens. Actuat. A 114, 276 (2004).
11.Henry, S., McAllister, D. V., Allen, M. G., and Prausnitz, M. R., J. Pharm. Sci. 87, 922 (1998).
12.Yung, K. L., Xu, Y., Kang, C., Liu, H., Tam, K. F., Ko, S. M., Kwan, F. Y., and Lee, T. M. H., J. Micromech. Microeng. 22, 015016 (2011).
13.Miller, P. R., Gittard, S. D., Edwards, T. L., Lopez, D. M., Xiao, X., Wheeler, D. R., Monteiro-Riviere, N. A., Brozik, S. M., Polsky, R., and Narayan, R. J., Biomicrofluidics, 5, 013415 (2011).
14.Davis, S. P., , Martanto, W., Allen, M. G., & Prausnitz, M. R.. IEEE Trans. Biomed. Eng. 52, 909 (2005).
15.Kim, K., Park, D. S., Lu, H. M., Che, W., Kim, K., Lee, J. B., and Ahn, C. H., J. Micromech. Microeng. 14, 597 (2004).
16.Lee, K., Lee, H. C., Lee, D. S., and Jung, H., Adv. Mater. 22, 483 (2010).
17.Wang, P. C., Paik, S. J., Kim, J., Kim, S. H., and Allen, M. G., Proc. IEEE 24th Int. Conf. Micro Electro Mech. Syst. 1039, 2011.
18.Pérennès, F., Marmiroli, B., Matteucci, M., Tormen, M., Vaccari, L., and Di Fabrizio, E., J. Micromech. Microeng. 16, 473 (2006).
19.Matteucci, M., Fanetti, M., Casella, M., Gramatica, F., Gavioli, L., Tormen, M., Grenci, G., De Angelis, F., Di Fabrizio, E., Microelect. Eng. 86, 752 (2009).
20.McGeough, J. A., Leu, M. C., Rajurkar, K. P., De Silva, A. K. M., and Liu, Q., CIRP Ann. Manufact. Technol. 50, 499 (2001).
21.Chia, X., Eng, A. Y. S., Ambrosi, A., Tan, S. M., and Pumera, M., Chem. Rev. 115, 11941 (2015).
22.Xia, Y. and Whitesides, G. M., Ann. Rev. Mater. Sci. 28, 153 (1998).
23.Miller, P. R., Xiao, X., Brener, I., Burckel, D. B., Narayan, R., and Polsky, R., Adv. Healthcare Mater. 3, 876 (2014).
24.Miller, P. R., Boehm, R. D., Skoog, S. A., Edwards, T. L., Rodriguez, M., Brozik, S., Brener, I., Byrd, T., Baca, J. T., Ashley, C., Narayan, R. J., Polsky, R., Electroanalysis 27, 2239 (2015).
25.Chandrasekar, M. S. and Pushpavanam, M., Electrochim. Acta 53, 3313 (2008).
26.Hadian, S. E. and Gabe, D. R., Surf. Coat. Technol. 122, 118 (1999).
27.Brown, X. Q., Ookawa, K., and Wong, J. Y., Biomaterials 26, 3123 (2005).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed