Skip to main content Accessibility help
×
Home

Evolution of microstructure in advanced ferritic-martensitic steels under irradiation: the origin of low temperature radiation embrittlement

  • S. Rogozhkin (a1) (a2), A. Nikitin (a1) (a2), N. Orlov (a1) (a2), A. Bogachev (a1) (a2), O. Korchuganova (a1) (a2), A. Aleev (a1) (a2), A. Zaluzhnyi (a1) (a2), T. Kulevoy (a1) (a2), R. Lindau (a3), A. Möslang (a3) and P. Vladimirov (a3)...

Abstract

Advanced reduced activation ferritic/martensitic steels and oxide dispersion-strengthened steels exhibit significant radiation embrittlement under low temperature neutron irradiation. In this study we focused on atom probe tomography (APT) of Eurofer97 and ODS Eurofer steels irradiated with neutrons and heavy ions at low temperatures. Previous TEM studies revealed dislocation loops in the neutron-irradiated f\m steels. At the same time, our APT showed early stages of solid solution decomposition. High density (1024 m–3) of ∼3–5 nm clusters enriched in chromium, manganese, and silicon atoms were found in Eurofer 97 irradiated in BOR-60 reactor to 32 dpa at 332°C. In this steel irradiated with Fe ions up to the dose of 24 dpa, pair correlation functions calculated using APT data showed the presence of Cr-enriched pre-phases.

APT study of ODS Eurofer found a significant change in the nanocluster composition after neutron irradiation to 32 dpa at 330 °C and an increase in cluster number density. APT of ODS steels irradiated with Fe ions at low temperatures revealed similar changes in nanoclusters.

These results suggest that irradiation-induced nucleation and evolution of very small precipitates may be the origin of low temperature radiation embrittlement of f\m steels.

Copyright

Corresponding author

References

Hide All
1. Lindau, R., Möslang, A., Rieth, M., Klimiankou, M., Materna Morris, E., Alamo, A., Tavassoli, F., Cayron, C., Lancha, M., Fernandez, P., Baluc, N., Schaublin, R., Diegele, E., Filacchioni, G., Rensman, J.W., Schaaf, B.V.D., Lucon, E., and Dietz, W., Fusion Eng. Des. 75–79, 989996 (2005).
2. Lindau, R., Möslang, A., Schirra, M., Schlossmacher, P., Klimenkov, M., J. Nucl. Mater. 307–311, 769 (2002).
3. Eiselt, Ch.Ch., Klimenkov, M., Lindau, R., Möslang, A., Sandim, H.R.Z., Padilha, A.F., Raabe, D., J. Nucl. Mater. 385, 231 (2009).
4. Klimiankou, M., Lindau, R., Möslang, A., J. Nucl. Mater. 329–333, 347351 (2004).
5. Aleev, A.A., Iskandarov, N.A., Klimenkov, M., Lindau, R., Möslang, A., Nikitin, A.A., Rogozhkin, S.V., Vladimirov, P., and Zaluzhnyi, A.G., J. Nucl. Mater. 409, 6571 (2011).
6. Tavassoli, A.-A.F., Alamo, A., Bedel, L., Forest, L., Gentzbittel, J.-M., Rensman, J.-W., Diegele, E., Lindau, R., Schirra, M., Schmitt, R., Schneider, H.C., Petersen, C., Lancha, A.-M., Fernandez, P., Filacchioni, G., Maday, M.F., Mergia, K., Boukos, N., Baluc, , Spatig, P., Alves, E., Lucon, E., J. Nucl. Mater. 329–333, 257262 (2004).
7. van der Schaaf, B., Tavassoli, F., Fazio, C., Rigal, E., Diegele, E., Lindau, R., LeMarois, G., Fusion Eng. Des. 69, 197203 (2003).
8. Petersen, C., Povstyanko, A., Prokhorov, V., Fedoseev, A., Makarov, O., and Dafferner, B., J. Nucl. Mater. 367–370, 544549 (2007).
9. Henry, J., Averty, X., and Alamo, A., J. Nucl. Mater. 417, 99103 (2011).
10. Rogozhkin, S.V., Aleev, A.A., Zaluzhnyi, A.G., Nikitin, A.A., Iskandarov, N.A., Vladimirov, P., Lindau, R., and Möslang, A., J. Nucl. Mater. 409, 9499 (2011).
11. Rogozhkin, S.V., Nikitin, A.A., Aleev, A.A., Germanov, A.B., Zaluzhnyi, A.G., Inorg. Mater. Appl. Res. 4 (2), 112-118 (2013).
12. Coppola, R., Lindau, R., May, R.P., Möslang, A., and Valli, M., J. Nucl. Mater. 386–388, 195198 (2009).
13. Materna Morris, E., Möslang, A., Rolli, R., and Schneider, H.C., J. Nucl. Mater. 386–388, 422425 (2009).
14. Materna Morris, E., Möslang, A., Rolli, R., and Schneider, H.C., Fus. Eng. Des. 86, 26072610 (2011).
15. Klimenkov, M., Materna Morris, E., and Möslang, A., J. Nucl. Mater. 417, 124126 (2011).
16. Weiß, O.J., Gaganidze, E. and Aktaa, J., Quantative, Adv. Sci. Technol. (Faenza, Italy) 73, 118123 (2010).
17. Gaganidze, E., Petersen, C., Materna Morris, E., Dethloff, C., Weiß, O.J., Aktaa, J., Povstyanko, A., Fedoseev, A., Makarov, O., and Prokhorov, V., J. Nucl. Mater. 417, 9398 (2011).
18. Luzginova, N. V., Rensman, J., Pierick, P., and Hegeman, J. B. J., J. Nucl. Mater. 428, 192196 (2012).
19. McClintock, D. A., Sokolov, M. A., Hoelzer, D. T., and Nanstad, R. K., J. Nucl. Mater. 392, 353359 (2009).
20. Lucon, E., Leenaers, A., and Vandermeulen, W., Fusion Eng. Des. 82, 24382443 (2007).
21. Dethloff, C., Gaganidze, E., Aktaa, J., J. Nucl. Mater. 454, 323331 (2014).
22. Rogozhkin, S. V., Orlov, N. N., b, Aleev, A. A., Zaluzhnyi, A. G., Kozodaev, M. A., Kuibida, R. P., Kulevoi, T. V., Nikitin, A. A., Chalykh, B. B., Lindau, R., Möslang, A., and Vladimirov, P., Phys. Met. Metallogr. 116 (1), 72-78 (2015).
23. Rogozhkin, S., Bogachev, A., Korchuganova, O., Nikitin, A., Orlov, N., Aleev, A., Zaluzhnyi, A., Kozodaev, M., Kulevoy, T., Chalykh, B., Lindau, R., Möslang, A., Vladimirov, P., Klimenkov, M., Heilmaier, M., Wagner, J., Seils, S., J. Nucl. Mater. Energy (2016) doi: 10.1016/j.nme.2016.06.011
24. Rogozhkin, S. V., Aleev, A. A., Zaluzhnyi, A. G., Kuibeda, R. P., Kulevoy, T. V., Nikitin, A. A., Orlov, N. N., Chalyh, B. B., Shishmarev, V.B., Phys. Met. Metallogr. 113 (2), 200211 (2012).
25. Kropachev, G., Kuibeda, R., Kozlov, A., Chalyh, B., Fertman, A.D., Kulevoy, T., Nikitin, A., Aleev, A., Rogozhkin, S., Rev. Sci. Instrum. 81 (1), 02B906 (2010).
26. Miller, M.K., Atom Probe Tomography: Analysis at the Atomic Level, New York: Kluwer, (2000).
25. Klimenkov, M., Lindau, R., Möslang, A., J. Nucl. Mater. 386–388, 553556 (2009).
26. Lucas, G.E., J. Nucl. Mater. 206, 287305 (1993).
27. Danoix, F. and Auger, P., Mater. Charact. 44,177201 (2000).
28. Rogozhkin, S. V., Korchuganova, O. A., Aleev, A. A., Inorg. Mater. Appl. Res. 7 (2), 210213 (2016).
29. Brimbal, D., Beck, L., Troeber, O., Gaganidze, E., Trocellier, P., Aktaa, J., Lindau, R., J. Nucl. Mater. 465, 236244 (2015).

Keywords

Related content

Powered by UNSILO

Evolution of microstructure in advanced ferritic-martensitic steels under irradiation: the origin of low temperature radiation embrittlement

  • S. Rogozhkin (a1) (a2), A. Nikitin (a1) (a2), N. Orlov (a1) (a2), A. Bogachev (a1) (a2), O. Korchuganova (a1) (a2), A. Aleev (a1) (a2), A. Zaluzhnyi (a1) (a2), T. Kulevoy (a1) (a2), R. Lindau (a3), A. Möslang (a3) and P. Vladimirov (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.