Skip to main content Accessibility help

Estimating the Relative Energy Content of Reactive Materials Using Nanosecond-Pulsed Laser Ablation

  • Jennifer L. Gottfried (a1), Steven W. Dean (a1), Eric S. Collins (a1) and Chi-Chin Wu (a1)


Recently, a laboratory-scale method for measuring the rapid energy release from milligram quantities of energetic material has been developed based on the high-temperature plasma chemistry induced by a focused, nanosecond laser pulse. The ensuing exothermic chemical reactions result in an increase in the laser-induced shock wave velocity compared to inert materials. Laser-induced air shock from energetic materials (LASEM) provides a method for estimating the detonation performance of novel organic-based energetic materials prior to scale-up and full detonation testing. Here, the extension of LASEM to non-organic energetic materials is discussed. The laser-induced shock velocities from reactive materials such as Al/PTFE, Al/CuO, Al/Zr alloys, Al/aluminum iodate hexahydrate, and porous silicon composites have been measured; in many cases, the high sensitivity of the samples resulted in propagation of the reaction to the surrounding material, producing significantly higher shock velocities than conventional energetic materials. Methods for compensating for this effect will be discussed. Despite this limitation, the relative comparison of the shock velocities, emission spectra, and combustion behavior of each type of material provides some insight into the mechanisms for increasing the energy release of the material on a fast (μs) and/or slow (ms) timescale.


Corresponding author


Hide All
1.Burakov, V. S., Tarasenko, N. V., and Savastenko, N. A., Spectrochim. Acta, Part B 56, 961 (2001).
2.Gottfried, J. L., Appl. Opt. 51, B13B21 (2012).
3.Roy, S., Jiang, N., Stauffer, H. U., Schmidt, J. B., Kulatilaka, W. D., Meyer, T. R., Bunker, C. E., and Gord, J. R., J. Appl. Phys. 113, 184310 (2013).
4.Delgado, T., Vadillo, J. M., and Laserna, J. J., J. Anal. At. Spectrom. 29, 16751685 (2014).
5.Kalam, S. A., Murthy, N. L., Mathi, P., Kommu, N., Singh, A. K., and Rao, S. V., J. Anal. At. Spectrom. 32, 15351546 (2017).
6.Guo, W., Zheng, X., Yu, G., Zhao, J., Zeng, Y., and Liu, C., J. Appl. Phys. 120, 123301 (2016).
7.Rezunkov, Y. A., J. Opt. Technol. 74, 526535 (2007).
8.Phipps, C., Birkan, M., Bohn, W., Eckel, H.-A., Horisawa, H., Lippert, T., Michaelis, M., Rezunkov, Y., Sasoh, A., Schall, W., Scharring, S., and Sinko, J., J. Propul. Power 26, 609637 (2010).
9.Kimblin, C., Trainham, R., Capelle, G. A., Mao, X., and Russo, R. E., AIP Adv. 7, 095208 (2017).
10.Gottfried, J. L., Phys. Chem. Chem. Phys. 16, 2145221466 (2014).
11.Gottfried, J. L., Propellants Explos. Pyrotech. 40, 674681 (2015).
12.Fischer, D., Gottfried, J. L., Klapötke, T. M., Karaghiosoff, K., Stierstorfer, J., and Witkowski, T. G., Angew. Chem., Int. Ed. 128, 16366–13369 (2016).
13.Gottfried, J. L. and Bukowski, E. J., Appl. Opt. 56, B47B57 (2017).
14.Gottfried, J. L., Klapötke, T. M., and Witkowski, T. G., Propellants Explos. Pyrotech. 42, 353359 (2017).
15.De Lucia, F. C. Jr. and Gottfried, J. L., Propellants, Explos., Pyrotech. 35, 268277 (2010).
16.De Lucia, F. C. and Gottfried, J. L., J. Phys. Chem. A 117, 95559563 (2013).
17.Collins, E. S. and Gottfried, J. L., Propellants Explos. Pyrotech. 42, 592602 (2017).
18.Mukasyan, A. S., Khina, B. B., Reeves, R. V., and Son, S. F., Chem. Eng. J. 174, 677686 (2011).
19.Sippel, T. R., Son, S. F., and Groven, L. J., Propellants Explos. Pyrotech. 38, 286295 (2013).
20.Sippel, T. R., Son, S. F., and Groven, L. J., Combust. Flame 161, 311321 (2014).
21.Rubio, M. A., Gunduz, I. E., Groven, L. J., Sippel, T. R., Han, C. W., Unocic, R. R., Ortalan, V., and Son, S. F., Combust. Flame 176, 162171 (2017).
22.Yarrington, C. D., Son, S. F., and Foley, T. J., J. Propul. Power 26, 734743 (2010).
23.Wang, H., Jian, G., Yan, S., DeLisio, J. B., Huang, C., and Zachariah, M. R., ACS Appl. Mater. Interfaces 5, 67976801 (2013).
24.Wang, H., Jian, G., Egan, G. C., and Zachariah, M. R., Combust. Flame 161, 22032208 (2014).
25.Altshuler, A. M., “Structural Bond Energy Release in Energetic Materials as New Means for Designing Nonconventional High Explosives: An Analysis of Soviet Research,” Report No. TRC-91–0003 TR (Technical Research Corporation, McLean, VA, 1991).
26.Weingarten, N. S., Gottfried, J. L., Batyrev, I. G., Collins, E. S., and Zachariah, M. R., “Utilizing the power of nanostructures to their fullest capability in energetic formulations,” Report No. ARL-TR-7604 (2016).
27.Overdeep, K. R., Livi, K. J. T., Allen, D. J., Glumac, N. G., and Weihs, T. P., Combust. Flame 162, 28552864 (2015).
28.Smith, D. K., Bello, M. N., Unruh, D. K., and Pantoya, M. L., Combust. Flame 179, 154156 (2017).
29.Plessis, M. d., Propellants, Explos., Pyrotech. 39, 348364 (2014).
30.Piekiel, N. W. and Morris, C. J., ACS Appl. Mater. Interfaces 7, 98899897 (2015).
31.Abraham, A., Piekiel, N. W., Morris, C. J., and Dreizin, E. L., Propell. Explos. Pyrotech. 41, 179188 (2016).
32.Khalaf Abbas, I., Ahmed Najam, L., and UlKahliq AuobSulaiman, A., Int. J. Phys. 3, 17 (2015).


Estimating the Relative Energy Content of Reactive Materials Using Nanosecond-Pulsed Laser Ablation

  • Jennifer L. Gottfried (a1), Steven W. Dean (a1), Eric S. Collins (a1) and Chi-Chin Wu (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed