Skip to main content Accessibility help

Encapsulated perovskite based photovoltaics devices with high stability

  • Man Kwong Wong (a1), Qi Dong (a1), Fangzhou Liu (a1), Aleksandra B. Djurišić (a1), Wai Kin Chan (a2), Hangkong Li (a3), Kaimin Shih (a3), Annie Ng (a4) and Charles Surya (a4)...


Perovskite based photovoltaics have recently emerged as the forerunner in the next generation photovoltaic technology because of the rapid increase of power conversion efficiency (PCE). However, it is well recognized that the exposure to moisture, heat and light causes the degradation of perovskite [1] (especially for methylammonium lead iodide (CH3NH3PbI3) which is the most commonly used perovskite material). It makes stability a main issue for the commercialization of perovskite based photovoltaics. Hence, an advanced encapsulation method is one of the keys to improve the stability. Here we present a comparison study between different encapsulation methods. Perovskite based photovoltaics devices were encapsulated using UV epoxy resin, with or without the addition of desiccant and the deposition of SiO2 layer. By minimizing the ingress of moisture and oxygen, devices with storage in ambient air under one sun continuous illumination could retain 94 % of the initial performance (PCE around 13%) after two days.


Corresponding author


Hide All
1. Song, T.-B., Chen, Q., Zhou, H., Jiang, C., Wang, H.-H., Yang, Y. M., Liu, Y., You, J. and Yang, Y., J. Mater. Chem. A 3, 9032 (2015).
2. Niu, G., Li, W., Meng, F., Wang, L., Dong, H. and Qiu, Y., J. Mater. Chem. A 2, 705 (2014).
3. Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N., and Seok, S. I., Nano Lett. 13, 1764 (2013).
4. Zhou, H., Chen, Q., Li, G., Luo, S., Song, T.-B., Duan, H.-S., Hong, Z., You, J., Liu, Y. and Yang, Y., Science 345, 542 (2014).
5. Han, Y., Meyer, S., Dkhissi, Y., Weber, K., Pringle, J. M., Bach, U., Spiccia, L. and Cheng, Y.-B., J. Mater. Chem. A 3, 8139 (2015).
6. Liu, F., Dong, Q., Wong, M. K., Djurišić, A. B., Ng, A., Ren, Z., Shen, Q., Surya, C., Chan, W. K., Wang, J., Ng, A. M. C., Liao, C., Li, H., Shih, K., Wei, C., Su, H. and Dai, J., Adv. Energy Mater., 2016, DOI: 10.1002/aenm.201502206.
7. Leijtens, T., Eperon, G. E, Pathak, S., Abate, A., Lee, M. M. and Snaith, H. J., Nat. Commun. 4, 2885 (2013).
8. Fakhri, M., Görrn, P. and Riedl, T., AM-FPD 13, 39 (2013).
9. Wuu, D.S., Lo, W.C., Chang, L.S. and Horng, R.H., Thin Solid Films 468, 105 (2004).
10. Perrotta, A., García, S. J., Michell, J. J., Andringa, A.-M. and Creatore, M., ACS Appl. Mater. Interfaces 7, 15968 (2015).
11. Reese, M. O., Gevorgyan, S. A., Jørgensen, M., Bundgaard, E., Kurtz, S. R., Ginley, D. S., Olson, D. C., Lloyd, M. T., Morvillo, P., Katz, E. A., Elschner, A., Haillant, O., Currier, T. R., Shrotriya, V., Hermenau, M., Riede, M., Kirov, K. R., Trimmel, G., Rath, T., Inganäs, O., Zhang, F., Andersson, M., Tvingstedt, K., Lira-Cantu, M., Laird, D., McGuiness, C., Gowrisanker, S. (J.) Gowrisanker, Pannone, M., Xiao, M., Hauch, J., Steim, R., DeLongchamp, D. M., Rösch, R., Hoppe, H., Espinosa, N., Urbina, A., Yaman- Uzunoglu, G., Bonekamp, J.-B., Breemen, A. J. M. v., Girotto, C., Voroshazi, E. and Krebs, F. C., Sol. Energy Mater. Sol. Cells 95, 1253 (2011).
12. You, J., Meng, L., Song, T.-B., Guo, T.-F., Yang, Y. (M.), Chang, W.-H., Hong, Z., Chen, H., Zhou, H., Chen, Q., Liu, Y., Marco, N. D. and Yang, Y., Nat. Nanotechnol. 11, 75 (2016).
13. Yamada, Y., Nakamura, T., Endo, M., Wakamiya, A., and Kanemitsu, Y., J. Am. Chem. Soc. 136, 11610 (2014).
14. Weerasinghe, H. C., Dkhissi, Y., Scully, A. D., Caruso, R. A. and Cheng, Y.-B., Nano Energy 18, 118 (2015).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed