Skip to main content Accessibility help

Electrochemical Characterization of TiO2 Nanotubular Films Exposed in an Aqueous Solution with a pH = 3.2

  • S. Mejía Sintillo (a1), C. Cuevas Arteaga (a1), R. Ma. Melgoza Alemán (a2) and P. Mijaylova Nacheva (a3)


TiO2 nanotubular structures were fabricated on Ti polished and unpolished foils exposed to H2O-Glycerol (50-50Vol.%)+0.27 M NH4F at 20V. The obtained TiO2 nanostructures were analyzed by SEM obtaining the morphological characterization, from which the roughness factors were calculated. Crystalline phases of both TiO2 nanotubular films were obtained by XRD after annealing at 450 °C and 600 °C for 2 h. The electrochemical stability of the TiO2 nanotubular films was obtained from the potentiodynamic polarization curves (PC) and the linear polarization resistance (Lpr) techniques, exposing the samples in 1M Na2SO4 + H2SO4 solution (pH = 3.2), such pH is in accordance with the acidic wastewater containing sulfur compounds coming from the industries or acid waters of the aquifers, which have been contaminated from the volcanoes nearby. It was concluded that the electrochemical stability of the crystallized nanotubular films is improved with the increase of the annealing temperature of the amorphous TiO2 arrays, which is associated to the higher composition of anatase and rutile, observing that the major amount of rutile improved the corrosion performance. The photoelectrochemical measurements were carried out in 0.5 M Na2SO4 solution using an 8 W UV lamp at a λ= 365 nm, whose results were recorded at zero bias during 10 min under darkness and illumination intervals of 1 min each. The obtained results were in agreement with the necessary features for being used in photocatalytic water remediation.


Corresponding author

*Corresponding Author. (Email:


Hide All
1. Albu, S. P. and Schmuki, P., Electrochim. Acta, Vol. 91, pp. 9095, (2013).
2. Reynaud Morales, A. G., Concha Guzmán, M. O., and Cuevas Arteaga, C., Corros. Rev., Vol. 29, No. 1–2, pp. 105121,( 2011).
3. Gregorio-Vázquez, Lucia, Cuevas-Arteaga, Cecilia, Hernández, Grecia, Ángel-Meraz, Ebelia del, Av. Cien. Ing.: 4(1), 8595 (January/March, 2013)
4. Bauer, S., Schmuki, P., von der Mark, K., and Park, J., Prog. Mater. Sci., Vol. 58, No. 3, pp. 261326, (2012).
5. Alivov, Y., Fan, Z. Y., and Johnstone, D., J. Appl. Phys., Vol. 106, No. 3, pp. 510, (2009).
6. Diaz, E. F., Cuevas-Arteaga, C., Flores-García, N., Sintillo, S.Mejía, and Sotelo-Mazón, O., J. Spectroscopy, Article ID 826759, 12 pages, Volume (2015).
7. Macak, J. M., Hildebrand, H., Marten-Jahns, U., and Schmuki, P., J. Electroanal. Chem., Vol. 621, No. 2, pp. 254266, (2008).
8. Vera-Jiménez, A. M., Melgoza-Alemán, R. M., Valladares-Cisneros, M. G., and Cuevas-Arteaga, C, J. Nanomaterials Article ID 624073,12 pages, Vol. (2015).
9. Acevedo-Peña, P., González, F., González, G., & González, I..Physical Chemistry Chemical Physics : PCCP, 16(47), 26213–20. (2014).
10. Yu, Jiaguo, Bo Wang State, Applied Catalysis B: Environmental 94 295302, (2010)
11. Cuevas-Arteaga, C. Corrosion Science 50.3: 650663, (2008).
12. Atyaoui, A.,a,b Cachet, H.,b Sutterb, E. M. M. and Bousselmia, L., Surf. Interface Anal.45, 17511759, (2013).
13. Carp, O., Huisman, C.L., Reller, A., Progress in Solid State Chemistry 32 33177 (2004).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed