Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-20T01:03:17.797Z Has data issue: false hasContentIssue false

Electrical characterization of Si-doped n-type α-Ga2O3 on sapphire substrates

Published online by Cambridge University Press:  11 January 2018

Takayuki Uchida
Affiliation:
Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
Kentaro Kaneko
Affiliation:
Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan Photonics and Electronic Science and Engineering Center, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520, Japan
Shizuo Fujita*
Affiliation:
Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan Photonics and Electronic Science and Engineering Center, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520, Japan
Get access

Abstract

Issues on tin (Sn) doping in the mist chemical vapor deposition of α-Ga2O3 was attributed to conversion of ionization states of Sn from Sn4+ to Sn2+ and/or out-diffusion of Sn after thermal annealing, resulting in highly resistive films. Silicon (Si) doping, instead, was succeeded by the use of a novel doping source of chloro-(3-cyanopropyl)-dimethylsilane [ClSi(CH3)2((CH2)2CN)]. Si was uniformly incorporated in the α-Ga2O3 films and the electrical properties were stable even after the thermal annealing. The activation ratio as donors was nearly 100%. The carrier (electron) concentration was controlled to the level of 1018 cm-3 by the [Si]/[Ga] ratio in the source solution. The maximum mobility was 31.5 cm2/V⋅s, in contrast to 24 cm2/V⋅s with Sn doping, suggesting advantage of Si doping . However, the reduction in dislocation defects in the α-Ga2O3 films formed owing to heteroepitaxy on sapphire was suggested to be the important subject to be considered in the next stage.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fujita, S., Oda, M., Kaneko, K., and Hitora, T., Jpn. J. Appl. Phys. 55, 1202A3 (2016).CrossRefGoogle Scholar
Kaneko, K., Kakeya, I., Komori, S., and Fujita, S., J. Appl. Phys. 113, 233901 (2013).CrossRefGoogle Scholar
Akaiwa, K. and Fujita, S., Jpn. J. Appl. Phys. 51, 070203 (2012).CrossRefGoogle Scholar
Akaiwa, K., Kaneko, K., Ichino, K., and Fujita, S., Jpn. J. Appl. Phys. 55, 1202BA (2016).CrossRefGoogle Scholar
Sasaki, K., Wakimoto, D., Thieu, Q. T., Koishikawa, Y., Kuramata, A., Higashiwaki, M., and Yamakoshi, S., IEEE Electron Device Lett. 38, 783 (2017)CrossRefGoogle Scholar
Green, J., Chabak, K. D., Baldini, M., Moser, N., Gilbert, R., Fitch, R. C. Jr., Wagner, G., Galazka, Z., McCandless, J., Crespo, A., Leedy, K., and Jessen, G. H. Sr., IEEE Electron Device Lett. 38, 790 (2017).CrossRefGoogle Scholar
Wong, M. H., Nakata, Y., Kuramata, A., Yamakoshi, S., and Higashiwaki, M., Appl. Phys. Express 10, 041101 (2017).CrossRefGoogle Scholar
Szubera, J., Czempika, G., Larcipreteb, R., Kozieja, D., and Adamowicza, B., Thin Solid Films 391, 198 (2001).CrossRefGoogle Scholar
Kwoka, M., Czempik, G., and Szuber, J., acta physica slovaca 55, 331 (2005).Google Scholar
Shinohara, D. and Fujita, S., Jpn. J. Appl. Phys. 47, 7311 (2008).CrossRefGoogle Scholar
Kaneko, K., Kawanowa, H., Ito, H., and Fujita, S., Jpn. J. Appl. Phys. 51, 020201 (2012).CrossRefGoogle Scholar
Fujita, S. and Kaneko, K., J. Cryst. Growth 401, 588 (2014).CrossRefGoogle Scholar
Oda, M., Kaneko, K., Fujita, S., and Hitora, T., Jpn. J. Appl. Phys. 55, 1202B4 (2016).CrossRefGoogle Scholar
Kawaharamura, T., Jpn. J. Appl. Phys. 53, 05FF08 (2014)CrossRefGoogle Scholar
Fujita, S., Kaneko, K., Ikenoue, T., Kawaharamura, T., and Furuta, M., Phys. Stat. Solidi (c), 11, 1225 (2014).CrossRefGoogle Scholar
Kaneko, K., Ito, Y., Uchida, T., and Fujita, S., Appl. Phys. Express 8, 095503 (2015).CrossRefGoogle Scholar
Oda, M., Tokuda, R., Kambara, H., Tanikawa, T., Sasaki, T., and Hitora, T., Appl. Phys. Express 9, 021101 (2016).CrossRefGoogle Scholar
Dang, G. T., Uchida, T., Kawaharamura, T., Furuta, M., Hyndman, A. R., Martinez, R., Fujita, S., Reeves, R. J., and Allen, M. W., Appl. Phys. Express 9, 041101 (2016).CrossRefGoogle Scholar
Kaneko, K., Kitajima, M., and Fujita, S., MRS Advances 2, 301 (2017).CrossRefGoogle Scholar
Jinno, R., Uchida, T., Kaneko, K., and Fujita, S., Appl. Phys. Express 9, 071101 (2016).CrossRefGoogle Scholar
Blanco, M. A., Sahariah, M. B., Jiang, H., Costales, A., and Pandey, R., Phys. Rev. B 72, 184103 (2005).CrossRefGoogle Scholar