Skip to main content Accessibility help
×
Home

Effects of Reaction Conditions on MoS2 Thin Film Formation Synthesized by Chemical Vapor Deposition using Organic Precursor

  • S. Ishihara (a1) (a2), Y. Hibino (a1), N. Sawamoto (a1), T. Ohashi (a3), K. Matsuura (a3), H. Machida (a4), M. Ishikawa (a4), H. Sudo (a4), H. Wakabayashi (a3) and A. Ogura (a1)...

Abstract

Molybdenum disulfide (MoS2) thin films were fabricated by two-step chemical vapor deposition (CVD) using (t-C4H9)2S2 and the effects of temperature, gas flow rate, and atmosphere on the formation were investigated in order to achieve high-speed low-temperature MoS2 film formation. From the results of X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) investigations, it was confirmed that c-axis orientation of the pre-deposited Mo film has a significant involvement in the crystal orientation after the reaction low temperature sulfurization annealing and we successfully obtained 3 nm c-axis oriented MoS2 thin film. From the S/Mo ratios in the films, it was revealed that the sulfurization reaction proceeds faster with increase in the sulfurization temperature and the gas flow rate. Moreover, the sulfurization under the H2 atmosphere promotes decomposition reaction of (t-C4H9)2S2, which were confirmed by XPS and density functional theory (DFT) simulation.

Copyright

Corresponding author

References

Hide All
1. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., and Kis, A., Nat. Nanotechnol. 6, 147 (2011).
2. Yu, Y., Li, C., Liu, Y., Su, L., Zhang, Y., and Cao, L., Sci. Rep. 3, 1866 (2013).
3. Ji, Q., Zhang, Y., Zhang, Y., and Liu, Z., Chem. Soc. Rev. 44, 2587 (2015).
4. Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M., and Lou, J., Small 8, 966 (2012).
5. Lee, Y. H., Zhang, X. Q., Zhang, W., Chang, M. T., Lin, C. T., Chang, K. D., Yu, Y. C., Wang, J. T. W., Chang, C. S., Li, L.-J., and Lin, T.-W., Adv. Mater. 24, 2320 (2012).
6. Ishihara, S., Suda, K., Hibino, Y., Sawamoto, N., Ohashi, T., Matsuura, K., Machida, H., Ishikawa, M., Sudoh, H., Wakabayashi, H., and Ogura, A., Jpn. J. Appl. Phys. 55, 06GF01 (2016).
7. Ishihara, S., Suda, K., Hibino, Y., Sawamoto, N., Ohashi, T., Matsuura, K., Machida, H., Ishikawa, M., Sudoh, H., Wakabayashi, H., and Ogura, A., Jpn. J. Appl. Phys. 55, 04EJ07 (2016).
8. Ishihara, S., Suda, K., Hibino, Y., Sawamoto, N., Ohashi, T. Matsuura, K., Machida, H., Ishikawa, M., Wakabayashi, H., and Ogura, A., ECS J. Solid State Sci. Technol. 5, Q3012 (2016).
9. Ishihara, S., Suda, K., Hibino, Y., Sawamoto, N., Ohashi, T., Yamaguchi, S., Matsuura, K., Machida, H., Ishikawa, M., Sudoh, H., Wakabayashi, H., and Ogura, A., MRS Proc. 1781, mrss15–2133709 (2015).
10. Lide, D. R., CRC Handbook of Chemistry and Physics, 84th ed. (CRC Press, Florida, 2003) p. 665.
11. Mark, H. F., McKetta, J. J. Jr., and Othmer, D. F., Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed. (John Wiley & Sons, Inc., New York, 1969) p. 375389.
12. Firefly version 8. Available at: http://classic.chem.msu.su/gran/firefly/index.html. (accessed 28 May 2016).
13. Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S., Windus, T. L., Dupuis, M., and Montgomery, J. A., J. Comput. Chem. 14, 1347 (1993).
14. Li, H., Zhang, Q., Yap, C. C. R., Tay, B. K., Edwin, T. H. T., Olivier, A., and Baillargeat, D., Adv. Funct. Mater. 22, 1385 (2012).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed