Skip to main content Accessibility help

Effects of alumina sources (gibbsite, boehmite, and corundum) on melting behavior of high-level radioactive waste melter feed

  • SeungMin Lee (a1), Pavel Hrma (a1), Richard Pokorny (a2), Jaroslav Klouzek (a2), Bradley J. VanderVeer (a1), Carmen P. Rodriguez (a1), Jaehun Chun (a1), Michael J. Schweiger (a1) and Albert A. Kruger (a3)...


Types of melter feed materials affect glass production rates. This study focuses on the effects of alumina sources on melting behavior of high-alumina high-level-waste melter feeds containing different alumina sources, namely, gibbsite, boehmite, and corundum. The heat flow from the glass melt to the cold cap, a floating layer of the reacting feed, is partially hindered by a foam layer at the bottom of the cold cap. Volume expansion tests and thermoanalytical methods revealed that a slow-melting feed with corundum foamed extensively, whereas a fast-melting feed with boehmite had a low reaction heat and produced less stable foam. The foam thickness, a critical factor for the rate of melting, estimated using the relationship between the heat conductivity and foam porosity was in reasonable agreement with experimental observation.


Corresponding author


Hide All
1.Kruger, A. A., WM2013 Conf. Proc.. (2013).
2.Schweiger, M. J., Hrma, P., Kim, D., Vienna, J. D., Matyas, J., et al., MS&T2015 Conf. (2015).
3.Lee, S., VanderVeer, B. J., Hrma, P., Hilliard, Z., Heilman-Moore, J. S., et al., J. Am. Ceram. Soc. 1-7 (2016); doi: 10.1111/jace.14629.
4.Pokorny, R., Hilliard, Z. J., Dixon, D. R., Schweiger, M. J., Guillen, D. P., et al., J. Am. Ceram. Soc. 98, 31123118 (2015).
5.Pokorny, R. and Hrma, P., J. Nucl. Mater. 445, 190199 (2014).
6.Hrma, P., Schweiger, M. J., Humrickhouse, C. J., Moody, J. A., Tate, R. M., et al., Ceram.–Silikaty, 54 (3), 193211 (2010).
7.Matlack, K. S., Gan, H., Chaudhuri, M., Kot, W., Gong, W., et al., (Washington, DC, and Columbia, MD, VSL-10R1690–1, 2010).
8.Pierce, D. A., Hrma, P., Marcial, J, Riley, B. J., and Schweiger, M. J., Int. J. Appl. Glass Sci. 3 (1), 5968 (2012).
9.Hilliard, Z. and Hrma, P., J. Am. Ceram. Soc. 99, 98105 (2016).
10.Rice, J. A., Pokorny, R., Schweiger, M. J., and Hrma, P., J. Am. Ceram. Soc. 97 (6), 19521958 (2014).
11.Schweiger, M. J., Hrma, P., Humrickhouse, C. J., Marcial, J., Riley, B. J., and TeGrotenhuis, N. E., J. Non-Cryst. Solids 356, 13591367 (2010).
12.Rodriguez, C. P., Chun, J., Schweiger, M. J., and Kruger, A. A., Thermochim. Acta 592, 8692 (2013).
13.Loeb, A. L., Am, J.. Ceram. Soc. 37, 9699 (1954).
14.Watanabe, K., Yano, T., Takeshita, K., Minami, K., and Ochi, E., Glass Technol. : Eur. J. Glass Sci. Technol. A 53 (6), 273278 (2012).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed