Skip to main content Accessibility help

Effect of UV Laser Irradiation on the properties of NiO films and ZnO/NiO Heterostructures

  • Srikanth Itapu (a1), Kamruzzaman Khan (a1) and Daniel G. Georgiev (a1)


The present work accentuates the effect of UV laser irradiation on the conductivity of nickel oxide (NiO) thin films, deposited at various temperatures by radio-frequency reactive sputtering of Ni in oxygen containing atmosphere. The effect of UV irradiation on zinc oxide – nickel oxide heterostructures, obtained by sputtering, was examined as well. It was found that the resistivity of NiO changes from 12 Ω-cm to 0.62 Ω-cm, and the majority carrier concentration from 3.95x1017 holes/cm3 to 4.22x1020 electrons/cm3. The current-voltage (I-V) characteristics of the ZnO/NiO heterostructure shows an improved p-n diode behavior with the forward bias current increasing for the laser-irradiated ZnO/NiO compared to the as-deposited stack. The observed improvement in diode-like behavior suggests that laser irradiation can be an important technique to controllably change the structural, electrical and optical properties of metal oxide thin films.


Corresponding author


Hide All
1. Ji, L.F., Jiang, Y., Wang, W. and Yu, Z., Appl. Phy. Lett. 85, 1577 (2004).
2. Ji, Y. and Jiang, Y., Appl. Phy. Lett. 89, 221103 (2006).
3. Chang, L., Jiang, Y. and Ji, L.F., Appl. Phy. Lett. 90, 082505 (2007).
4. Long, H., Fang, G., Huang, H., Mo, X., Xia, W., Dong, B., Meng, X. and Zhao, X., Appl. Phy. Lett. 95, 013509 (2009).
5. Nakamura, Y., Ishikura, Y., Morita, Y., Takagi, H. and Fujitsu, S., Sens. & Actuators B: Chem. 187, 578 (2013).
6. Betancur, R., Maymo, M., Elias, X., Vuong, L.T. and Martorell, J., Solar Energy Mat. & Solar Cells 95, 735 (2011).
7. Gupta, P., Dutta, T., Mal, S. and Narayan, J., Appl. Phy. Lett. 111, 013706 (2012).
8. Tyagi, M., Tomar, M. and Gupta, V., IEEE Elec. Dev. Lett, 34, 81 (2013).
9. Liu, S., Liu, S.L., Long, Y.Z., Liu, L.Z., Zhang, H.D., Zhang, J.C., Han, W.P. and Liu, Y.C., Appl. Phy. Lett. 104, 042105 (2014).
10. Khan, E.H., Langford, S.C. and Dickinson, J.T., Langmuir 25, 1930 (2009).
11. Janotti, A. and Van De Walle, C.G., Rep. Prog. Phys. 72, 126501 (2009).
12. Zhao, Y. and Jiang, Y., Appl. Phy. Lett. 103, 114903 (2008).
13. Lu, H., Tu, Y., Lin, X., Fang, B., Luo, D. and Laaksonen, A., Mat. Lett. 64, 2072 (2010).
14. Wen, X.M., Xu, P. and Lukins, P.B., J. Luminescence 106, 1 (2004).
15. Cho, D.Y., Song, S.J., Kim, U.K., Kim, K.M., Lee, H.K. and Hwang, C.S., J. Mat. Chem. C1, 4334 (2013).
16. Kim, D.S. and Lee, H.C., J. Appl. Phys. 112, 034504 (2012).
17. Molaei, R., Bayati, R. and Narayan, J., Cryst. Growth Des. 13, 5459 (2013).
18. Molaei, R., Bayati, M.R., Alipour, H.M., Nori, S. and Narayan, J., J. Appl. Phys. 113, 233708 (2013).
19. Tsai, S.Y., Hon, M.H. and Lu, Y.M., Solid State Elect. 63, 37 (2011).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed