Skip to main content Accessibility help
×
Home

The effect of Ru on Ti50Pd50 high temperature shape memory alloy: a first-principles study

  • R. G. Diale (a1), R. Modiba (a2), P. E. Ngoepe (a1) and H. R. Chauke (a1)

Abstract

The stability of the Ti50Pd50-xRux alloy was investigated using first-principles density functional theory within the plane-wave pseudopotential method. Firstly, the Ti50Pd50 gave equilibrium lattice parameter and lowest heats of formation in better agreement with experimental data to within 3%. The heat of formation decreases with an increase in Ru concentration, consistent with the trend of the density of states which is lowered at the Fermi level as Ru content is increased which suggests stability. It was also found that from the calculated elastic constants the structures showed positive shear modulus above 20 at. % Ru, condition of stability. Furthermore, the addition of Ru was found to strengthen the Ti50Pd50-xRux system at higher concentrations. The thermal coefficients of linear expansion for the Ti50Pd31.25Ru18. 75 are higher at low temperature, and that the TiPd-Ru system tends to expand more at low content of 18.75 at. % Ru than at higher content. Partial substitution of Pd with Ru was found more effective as a strengthening element and may enhance the martensitic transformation temperature of the Ti50Pd50 alloy.

Copyright

Corresponding author

References

Hide All
[1]Jani, J. M., Leary, M., Subi, A., and Gibson, M. A., Mater. Des. 56, p. 1078 (2014).
[2]Melton, K. N., Otsuka, K., and Wayman, C. M., Cambridge University Press, pp. 220-239 (1998).
[3]Yamabe-Mitarai, Y. et al, Proc. of Materials Today 2, pp. 517-552 (2015).
[4]Mahlangu, R., Phasha, M. J., Chauke, H. R., and Ngoepe, P. E., Intermetallics 33, pp. 27-32 (2013).
[5]Donkersloot, H. C. and Van Vucht, J. H. N., JLCM 20, pp. 83-91 (1970).
[6]Mashamaite, M. P., Chauke, H. R. and Ngoepe, P. E., IOP Conf. Sr. Mater. Sci. Eng. 430, p. 012019 (2018).
[7]Chauke, H., Mashamaite, M., Modiba, R., and Ngoepe, P., Key Eng. Mater. 770, pp. 230-238 (2018).
[8]Guo, C., Li, M., Li, C., and Du, Z., CALPHAD 23, pp. 512-517 (2011).
[9]Huang, X., Karin, M., and Ackland, J., Phys. Rev. B67, pp. 24101-24107 (2003).
[10]Golberg, D., Xu, Y., Murakami, Y., Morito, S. and Otsuka, K., Intermetallics 3, pp. 35-46 (1995).
[11]Arockiakumar, R., Takahashi, M., Takahashi, S., and Yamabe-Mitarai, Y., Mater. Sci. Eng. A585, pp. 86-93 (2013).
[12]Otsuka, K., Oda, K., Ueno, Y., Piao, M., Ueki, T., and Horikawa, H., Scripta MetallMater. 29, pp. 1355-1358 (1993).
[13]Bozzolo, G., Mosca, H. O., and Noebe, R. D., Intermetallics 15, pp. 901-911 (2007).
[14]Kumar, P. K., Lagoudas, D. C., Zanca, J., and Lagouda, M. Z., Proc. of SPIE 12, p. 6170 (2006).
[15]R Hamond, C., The elements. Boca Raton, FL: CRC (2005).
[16]Jahn’atek, M., Levy, O., Hart, G. L. W., Nelson, L. J., Chepulskii, R. V., Xue, J., and Curtarolo, S., Phys. Rev. B84, pp. 214110-214118 (2011).
[17]Kresse, G. and Hafner, J., Phys. Rev. B47, pp. 58-561 (1993).
[18]Kresse, G. and Furthmüller, J., Phys. Rev. B54, pp. 11169-11186 (1996).
[19]Perdew, J. P. and Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, pp. 3865-3868 (1996).
[20]Kohn, W. and Sham, L. J., Phys. Rev. 140, pp. 1133-1138 (1965).
[21]Monkhorst, H. J. and Pack, J. D., Phys. Rev. B13, pp. 5188-1592 (1996).
[22]Parlinski, K., Li, Z. Q. and Kawazoe, Y., Phys. Rev. Lett. 78, pp. 4063-4066 (1997).
[23]Chen, X. Q., Fu, C. L., and Morris, J. R., Intermetallic 18, pp. 998-1006 (2010).
[24]Xing, W., and Chen, X. Q., Intermetallics 28, pp. 16-24 (2012).
[25]Gornostyrev, Yu. N., Kontsevoi, O. Yu., Maksyutov, A. F., Freeman, A. J., Katsnelson, M. I., Trefilov, A. V., and Lichtenshtein, A. I., Phys. Rev. B70, p 014102 (2004).
[26]Pankhurst, D. A., Nguyen-Manh, D., and Pettifor, D. G., Phys. Rev. B69, p. 075113 (2004).
[27]Mehl, M. J. and Klein, B. M., Intermetallic Compd. 1, pp. 1-26 (1994).
[28]Lethole, N. L., Chauke, H. R., and Ngoepe, P. E., Comput. Theor. Chem. 1155, pp. 67-74 (2019).
[29]Gschneidner, K. et al, Nat. Mater. 2, pp. 587-591 (2003).
[30]Pettifor, D. G., Mater. Sci. Technol. 8, pp. 345-349 (1992).
[31]Pugh, S., Philos. Mag. 45, pp. 823-843 (1954).
[32]Frantsevich, I. N. and Voronov, S. A., Naukova Dumka, Kiev, pp. 60-180 (1983).
[33]Murtaza, G. et al, J. Alloys Compd. 597, pp. 36-44 (2014).
[34]Li, H., Chen, Y., Wang, H., Wang, H., Li, Y., Harran, I., Li, Y. and Guo, C., J. Alloys Compd. 700, pp. 208-214 (2017).
[35]Yang, J., Huang, J., Ye, Z., Fan, D., Chen, S., and Zhao, Y., Ceram. Int., 43, pp. 7751-7761 (2017).
[36]Anderson, O. L., J. Phys. Chem. solids 24, pp. 909-917 (1963).
[37]Przeliorz, R. and Piatkowski, J., METALURGIJA 54, pp. 543-546 (2015).

Keywords

Related content

Powered by UNSILO

The effect of Ru on Ti50Pd50 high temperature shape memory alloy: a first-principles study

  • R. G. Diale (a1), R. Modiba (a2), P. E. Ngoepe (a1) and H. R. Chauke (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.