Skip to main content Accessibility help
×
Home

Effect of Nonionic Conjugated Matrix Polymer and P-Dopant on Carbon Nanotube Aggregation and Thermoelectric Properties

  • Hui Li (a1), Jiyuan Huang (a1), Toshiyuki Sato (a2), Paul Czubarow (a3) and Howard E. Katz (a1)...

Abstract

The properties of a mixed metallic and semiconducting carbon nanotube (CNT) sample dispersed in nonconjugated poly(methyl methacrylate) (PMMA) and conjugated poly(bisdodecylquaterthiophene) (PQT12) were compared, with and without p-doping by NOBF4. The CNTs were distributed much more evenly, and percolated at much lower concentrations (ca. 2%), in the PMMA as compared to PQT12, as judged by optical microscopy and electronic conductivity measurements. Seebeck coefficients (S) obtained on the PMMA samples indicated dominance by the metallic fraction, with values <10 µV/K. Composites made with PQT12 alone showed slightly higher values of S, but with the addition of 3 wt % dopant, S increased markedly to about 100 µV/K at 5-10% CNT fractions, while conductivity was unexpectedly low. As the CNT fraction in the doped sample was increased to 25-30%, conductivity approached that of the comparable concentration of CNTs in PMMA, while S, ca. 15 µV/K, was still higher than that measured in PMMA. The observations inform interpretations of CNT-polymer composite thermoelectric data, pointing out the roles of conjugated main chains and added dopants in modulating contributions of CNTs to thermoelectric composite performance.

Copyright

Corresponding author

*Corresponding author: hekatz@jhu.edu

References

Hide All
1.Zhang, Q., Sun, Y., Xu, W., and Zhu, D. B., Organic Thermoelectric Materials: Emeging Green energy Materials Converting Heat to Electricity Dirctly and Efficiently, Adv. Mater. 26, 6829 (2014).
2.McGrail, B.T., Sehirlioglu, A., and Pentzer, E., Polymer Composites for Thermoelectric Applications, Ang. Chemie. 54, 1710 (2015).
3.Blackburn, J.L., Ferguson, A.J., Cho, C., and Grunlan, J.C., Carbon Nanotube-based Thermoelectric Materials and Devices, Adv. Mater. 30 ,1704386 (2018).
4.Li, H., DeCoster, M.E., Ireland, R.M., Song, J., Hopkins, P.E., and Katz, H.E., Modificatio of the Bis(dodecylquaterthiophene) Structure for High and Predominantly Nonionic Conductivity with Matched Dopants, J. Am. Chem. Soc. 139, 11149 (2017).
5.Nakai, Y., Honda, K., Yanagi, K., Kataura, H., Kato, T., Yamamoto, T., and Maniwa, Y., Giant Seebeck Coefficient in Single-wall Carbon Nanotube Film, https://arxiv.org/ftp/arxiv/papers/1401/1401.7469.pdf.
6.Nonoguchi, Y., Ohashi, K., Kanazawa, R., Ashiba, K., Hata, K., Nakagawa, T., Adachi, C., Tanase, T., and kawai, T., Systematic Conversion of Single Walled Carbon Nanotubes into n-Type Thernoelectric Materials by Molecular Dopants, Sci. Rep. 3, 344 (2013).

Keywords

Effect of Nonionic Conjugated Matrix Polymer and P-Dopant on Carbon Nanotube Aggregation and Thermoelectric Properties

  • Hui Li (a1), Jiyuan Huang (a1), Toshiyuki Sato (a2), Paul Czubarow (a3) and Howard E. Katz (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.