Skip to main content Accessibility help

Effect of He-appm/DPA ratio on the damage microstructure of tungsten

  • R.W. Harrison (a1), H. Amari, G. Greaves (a1), J.A. Hinks (a1) and S.E. Donnelly (a1)...


In-situ ion irradiation and transmission electron microscopy has been used to examine the effects of the He appm to DPA ratio, temperature and dose on the damage structure of tungsten (W). Irradiations were performed with 15 or 60 keV He+ ions, achieving He-appm/displacements per atom (DPA) ratios of ∼40,000 and ∼2000, respectively, at temperatures between 500 and 1000°C to a dose of ∼3 DPA. A high number of small dislocation loops with sizes around 5–20 nm and a He bubble lattice were observed for both He-appm/DPA ratios at 500°C with a bubble size ∼1.5 nm. Using the g.b =0 criterion the loops were characterised as b = ±1/2<111> type. At 750°C bubbles do not form an ordered array and are larger in size compared to the irradiations at 500°C, with a diameter of ∼3 nm. Fewer dislocation loops were observed at this temperature and were also characterised to be b = ±1/2<111> type. At 1000°C, no dislocation loops were observed and bubbles grew as a function of fluence attributed to vacancy mobility being higher and vacancy clusters becoming mobile.


Corresponding author


Hide All
[1] Bolt, H., Barabash, V., Krauss, W., Linke, J., Neu, R., Suzuki, S., Yoshida, N., and Team, A. U., “Materials for the plasma-facing components of fusion reactors.”
[2] Gilbert, M. R., Dudarev, S. L., Zheng, S., Packer, L. W., and Sublet, J.-C., “An integrated model for materials in a fusion power plant: transmutation, gas production, and helium embrittlement under neutron irradiation,” Nucl. Fusion, vol. 52, no. 8, p. 083019, 2012.
[3] Tanno, T., Hasegawa, A., He, J.-C., Fujiwara, M., Nogami, S., Satou, M., Shishido, T., and Abe, K., “Effects of Transmutation Elements on Neutron Irradiation Hardening of Tungsten,” Mater. Trans., vol. 48, no. 9, pp. 23992402, 2007.
[4] Tanno, T., Hasegawa, a., He, J. C., Fujiwara, M., Satou, M., Nogami, S., Abe, K., and Shishido, T., “Effects of transmutation elements on the microstructural evolution and electrical resistivity of neutron-irradiated tungsten,” J. Nucl. Mater., vol. 386–388, no. 2009, pp. 218221, 2009.
[5] Fukuda, M., Yabuuchi, K., Nogami, S., Hasegawa, A., and Tanaka, T., “Microstructural development of tungsten and tungsten–rhenium alloys due to neutron irradiation in HFIR,” J. Nucl. Mater., vol. 455, pp. 460463, 2014.
[6] Yi, X., Jenkins, M. L., Briceno, M., Roberts, S. G., Zhou, Z., and Kirk, M. A., “In-situ study of self-ion irradiation damage in W and W-5Re at 500°C,” Philos. Mag. A, vol. 93, no. 14, pp. 17151738, 2012.
[7] Yi, X., Jenkins, M. L., Hattar, K., Edmondson, P. D., and Roberts, S. G., “Characterisation of radiation damage in W and W-based alloys from 2 MeV self-ion near-bulk implantations,” Acta Mater., vol. 92, pp. 163177, 2015.
[8] El-Atwani, O., Hattar, K., Hinks, J. A., Greaves, G., Harilal, S. S., and Hassanein, A., “Helium bubble formation in ultrafine and nanocrystalline tungsten under different extreme conditions,” J. Nucl. Mater., vol. 458, pp. 216223, Mar. 2015.
[9] El-Atwani, O., Hinks, J. A., Greaves, G., Gonderman, S., Qiu, T., Efe, M., and Allain, J. P., “In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments.,” Sci. Rep., vol. 4, p. 4716, 2014.
[10] Iwakiri, H., Yasunaga, K., Morishita, K., and Yoshida, N., “Microstructure evolution in tungsten during low-energy helium ion irradiation.”
[11] Lee, H. T., Haasz, A. A., Davis, J. W., Macaulay-Newcombe, R. G., Whyte, D. G., and Wright, G. M., “Hydrogen and helium trapping in tungsten under simultaneous irradiations.”
[12] Miyamoto, M., Mikami, S., Nagashima, H., Iijima, N., Nishijima, D., Doerner, R. P., Yoshida, N., Watanabe, H., Ueda, Y., and Sagara, A., “Systematic investigation of the formation behavior of helium bubbles in tungsten,” J. Nucl. Mater., vol. 463, pp. 333336, Aug. 2015.
[13] Nishijima, D., Ye, M., Ohno, N., and Takamura, S., “Formation mechanism of bubbles and holes on tungsten surface with low-energy and high-flux helium plasma irradiation in NAGDIS-II,” J. Nucl. Mater., vol. 329–333, pp. 10291033, Aug. 2004.
[14] Ueda, Y., Fukumoto, M., Yoshida, J., Ohtsuka, Y., Akiyoshi, R., Iwakiri, H., and Yoshida, N., “Simultaneous irradiation effects of hydrogen and helium ions on tungsten,” J. Nucl. Mater., vol. 386–388, pp. 725728.
[15] Yoshida, N., Iwakiri, H., Tokunaga, K., and Baba, T., “Impact of low energy helium irradiation on plasma facing metals.”
[16] Ziegler, J. F., “Stopping of energetic light ions in elemental matter,” J. Appl. Phys., vol. 85, no. 3, p. 1249, 1999.
[17] Stoller, R. E., Toloczko, M. B., Was, G. S., Certain, A. G., Dwaraknath, S., and Garner, F. A., “On the use of SRIM for computing radiation damage exposure,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 310, pp. 7580, 2013.
[18] A. E521, “Standard Practice for Neutron Radiation Damage Simulation by Charged-Particle,” Annu. B. ASTM Stand., vol. 12.02, no. Reapproved, pp. 121, 2009.
[19] Johnson, P. B. and Mazey, D. J., “Gas-bubble superlattice formation in bcc metals,” J. Nucl. Mater., vol. 218, no. 3, pp. 273288, Mar. 1995.
[20] Ferroni, F., Yi, X., Arakawa, K., Fitzgerald, S. P., Edmondson, P. D., and Roberts, S. G., “High temperature annealing of ion irradiated tungsten,” Acta Mater., vol. 90, pp. 380393, 2015.
[21] , D. R. M. and , X. Y. and , M. A. K. and Dudarev, S. L., “Elastic trapping of dislocation loops in cascades in ion-irradiated tungsten foils,” J. Phys. Condens. Matter, vol. 26, no. 37, p. 375701, 2014.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed