Skip to main content Accessibility help

Effect of Cylinder Height on Directional Photoluminescence from Highly Luminous Thin Films on Periodic Plasmonic Arrays

  • Motoharu Saito (a1), Shunsuke Murai (a1) (a2), Hiroyuki Sakamoto (a1), Masanori Yamamoto (a3), Ryosuke Kamakura (a1), Takayuki Nakanishi (a3), Koji Fujita (a1), Yasuchika Hasegawa (a3) and Katsuhisa Tanaka (a1)...


Periodic array of metallic nanocylinder combined with the highly luminous dielectric layer is a good platform to control the intensity, spectral shape and directionality of photoluminescence (PL). In spite of its importance, the effect of cylinder height on the PL properties has not been verified experimentally. Here we investigate the effect of cylinder height on the PL properties both experimentally and numerically. The system consisted of a highly luminous layer made of Eu(III) complex and a series of periodic array of aluminum nanocylinders with different heights. The strongest directional PL was achieved when the height is similar to the diameter, i.e., the aspect ratio close to unity. Our finding is useful for designing the compact and efficient luminescence source with directional output.


Corresponding author


Hide All
1. Drexhage, K. H., J. Lumin., 1-2, 693 (1970).
2. Kühn, S., Håkanson, U., Rogobete, L., and Sandoghdar, V., Phys. Rev. Lett. 97, 017402 (2006).
3. Anger, P., Bharadwaj, P., and Novotny, L., Phys. Rev. lett. 96, 113002 (2006).
4. Bakker, R. M., Yuan, H.-K., Liu, Z., Drachev, V. P., Kildishev, A. V., Shalaev, V. M., Pedersen, R. H., Gresillon, S., and Boltasseva, A., Appl. Phys. Lett. 92, 043101 (2008).
5. Taminiau, T. H., Stefani, F. D., Segerink, F. B., and van Hulst, N. F., Nat. Photon. 2, 234 (2008).
6. Kinkhabwala, A., Yu, Z., Fan, S., Avlasevich, Y., Mullen, K., and Moerner, W. E., Nat. Photon. 3, 654 (2009).
7. Feng, J., Okamoto, T., and Kawata, S., Appl. Phys. Lett. 87, 241109 (2005).
8. Okamoto, T., H’Dhili, F. and Kawata, S., Appl. Phys. Lett. 85, 3968 (2004).
9. Okamoto, K., Niki, I., Shvartser, A., Narukawa, Y., Mukai, T. and Scherer, A., Nat. Mater. 3, 601 (2004)
10. Kosako, T., Kadoya, Y, and Hofmann, H. F., Nat. Photon. 4, 312 (2010).
11. Kravets, V. G., Schedin, F., and Grigorenko, A. N., Phys. Rev. Lett. 101, 087403 (2008).
12. Markel, V. A., J. Phys. B 38, L115 (2005).
13. Vecchi, G., Giannini, V., and Gómez Rivas, J., Phys. Rev. B 80, 201401 (2009).
14. Lozano, G., Louwers, D. J., Rodríguez, S.R.K., Murai, S., Jansen, O.T.A., Verschuuren, M. A, Gómez Rivas, J., Light: Sci. Appl. 2, e66 (2013).
15. Murai, S, Verschuuren, M.A., Lozano, G., Pirruccio, G, Rodriguez, SRK, Gómez Rivas, J, Opt. Express 21, 4250 (2013).
16. Lozano, G., Grzela, G., Verschuuren, M. A, Ramezani, M., Gómez Rivas, J., Nanoscale, 6, 9223 (2014).
17. Nikitin, A., Remezani, M., and Gomez Rivas, J., ECS J. Solid State SC 5, R3164 (2016).
18. Hasegawa, Y., Wada, Y., Yanagida, S., Kawai, H., Yasuda, N., and Nagamura, T., Appl. Phys. Lett. 83, 3599 (2003)
19. Hasegawa, Y., Yamamuro, M., Wada, Y., Kanehisa, N., Kai, Y., and Yanagida, S., J. Phys. Chem. A 107, 1697 (2003)
20. Zhou, W. and Odom, T. W., Nat. Nanotech. 6, 423 (2011).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed