Skip to main content Accessibility help

Doping of boron or nitrogen to multilayered graphene grown on copper by thermal chemical vapor deposition of methane and vapor of phenylboronic acid or melamine

  • Ryoko Furukawa (a1), Yuno Yamamoto (a1), Yoji Nabei (a1) and Shunji Bandow (a1)


Either boron or nitrogen doped multilayered graphene was prepared by thermal chemical vapor deposition (CVD). Obtained heteroatom doped graphene was examined by Raman scattering, x-ray photo electron spectroscopy (XPS) and temperature dependence of sheet resistance. From the Raman scattering, obvious increase of ID/IG ratio could not be detected by boron doping, while it increased by ∼0.2 or more for nitrogen doped sample. From XPS, doping rates of boron and nitrogen were estimated to be in the range of 5∼12 at% and 1∼2 at%, respectively. XPS also showed that the boron and nitrogen atoms would locate at the doping sites of both graphitic and neighborhood of atomic defect. Magnitude of sheet resistance was decreased by either doping of boron or nitrogen.


Corresponding author


Hide All
1.Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S. and Geim, A.K., Rev. Mod. Phys. 81, 109 (2009).10.1103/RevModPhys.81.109
2.Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L. and Yu, G., Nano Lett. 9, 1752 (2009).10.1021/nl803279t
3.Guo, B., Liu, Q., Chen, E., Zhu, H., Fang, L. and Gong, J.R., Nano Lett. 10, 4975 (2010).
4.Zhang, C., Fu, L., Liu, N., Liu, M., Wang, Y. and Liu, Z., Adv. Mater. 23, 1020 (2011).
5.Zhang, J., Li, J., Wang, Z., Wang, X., Feng, W., Zheng, W., Cao, W. and Hu, P.A., Chem. Mater. 26, 2460 (2014).10.1021/cm500086j
6.Capasso, A., Dikonimos, T., Sarto, F., Tamburrano, A., Bellis, G.D., Sarto, M.S., Faggio, G., Malara, A., Messina, G. and Lisi, N., Beilstein J. Nanotechnol. 6, 2028 (2015).10.3762/bjnano.6.206
7.Bandow, S. and Yoshida, T., Appl. Phys. A 123, 728 (2017).10.1007/s00339-017-1356-9
8.Zhu, Q., Yu, J., Zhang, W., Dong, H. and Dong, L., J. Renew. Sustain. Energy 5, 021408 (2013)
9.Wang, H., Zhou, Y., Wu, D., Liao, L., Zhao, S., Peng, H., Liu, Z., Small 9, 1316 (2013).
10.Gebhardt, J., Koch, R.J., Zhao, W., Höfert, O., Gotterbarm, K., Mammadov, S., Papp, C., Görling, A., Steinrück, H.-P. and Seyller, Th., Phys. Rev. B 87, 155437 (2013).10.1103/PhysRevB.87.155437
11.Lv, R., Chen, G., Li, Q., McCreary, A., Botello-Méndez, A., Morozov, S.V., Liang, L., Declerck, X., Perea-López, N., Cullen, D. A., Feng, S., Elías, A.L., Cruz-Silva, R., Fujisawa, K., Endo, M., Kang, F., Charlier, J.-C., Meunier, V., Pan, M., Harutyunyan, A.R., Novoselov, K.S. and Terrones, M., PNAS 112, 14527 (2015).
12.Bandow, S., Rao, A.M., Sumanasekera, G.U., Eklund, P.C., Kokai, F., Takahashi, K., Yudasaka, M., Iijima, S., Appl. Phys. A 71, 561 (2000).10.1007/s003390000681
13.D Wagner, C., Riggs, W.M., E Davis, L., F Moulder, J., Muilenberg, G.E., Hand book of X-ray Photoelectron spectroscopy, (Perkin-Elmer Corporation, Eden Prairie, MN, 1979) p.188.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed