Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T09:37:32.765Z Has data issue: false hasContentIssue false

Direct Patterning of Ionic Polymers with E-Beam Lithography

Published online by Cambridge University Press:  26 January 2016

Annina M. Steinbach*
Affiliation:
Institute of Electron Devices and Circuits, Ulm University, Albert-Einstein-Allee 45, 89069 Ulm, Germany
Stefan Jenisch
Affiliation:
Institute of Electron Devices and Circuits, Ulm University, Albert-Einstein-Allee 45, 89069 Ulm, Germany
Parisa Bakhtiarpour
Affiliation:
Institute of Experimental Physics, Ulm University, Albert-Einstein-Allee 11, 89069 Ulm, Germany
Masoud Amirkhani
Affiliation:
Institute of Experimental Physics, Ulm University, Albert-Einstein-Allee 11, 89069 Ulm, Germany
Steffen Strehle
Affiliation:
Institute of Electron Devices and Circuits, Ulm University, Albert-Einstein-Allee 45, 89069 Ulm, Germany
Get access

Abstract

Controlling the bending properties of ionic polymer-metal composites may immediately affect their implementation in robotics and medicine. In the present work, we propose a direct patterning method for the ionic polymer Nafion using conventional electron-beam writing. In a proof-of-concept study, we show that patterns of arbitrary geometry and sizes between 1 µm and 50 µm can be engraved into the polymer surface without using resists. Pattern depth can be deliberately controlled by adjusting the exposure dose. The patterns were stable even after prolonged immersion in ionic solution. The presented technique therefore opens up the possibility to create unique electrode geometries and to investigate independently the effect of pattern size, density, depth as well as geometry on ionic polymer-metal composite bending.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kim, G., Kim, H., Kim, I., Kim, J., Lee, J., and Ree, M., J. Biomater. Sci. Polym. Ed. 20, 16871707 (2009).CrossRefGoogle Scholar
Latif, U., Dickert, F. L., Blach, R. G., and Feucht, H. D., J. Chem. Soc. Pak. 35, 1722 (2013).Google Scholar
Bahramzadeh, Y., and Shahinpoor, M., Soft Robotics 1, 3851 (2014).CrossRefGoogle Scholar
Kim, K. J., and Shahinpoor, M., Smart Mater. Struct. 12, 6579 (2003).CrossRefGoogle Scholar
Bakhtiarpour, P., Parvizi, A., Müller, M., Shahinpoor, M., Marti, O., and Amirkhani, M., Smart Mater. Struct. 25, 015008 (2016).CrossRefGoogle Scholar
Mohammad, M. A., Muhammad, M., Dew, S. K., Stepanova, M., in Nanofabrication, edited by Stepanova, M. and Dew, S. (Springer-Verlag, Wien, 2012), p. 14 f.Google Scholar
Van Zant, P., Microchip Fabrication, 6th ed. (McGraw-Hill Education, New York, 2014) p. 264 f.Google Scholar
Reitz, D., Thomas, J., Schmidt, H., Menzel, S., Wetzig, K., Albert, M., and Bartha, J. W., J. Vac. Sci. Technol. 25, 271276 (2007).CrossRefGoogle Scholar
Strehle, S., Menzel, S., Jahn, A., Merkel, U., Bartha, J. W., and Wetzig, K., Microelectron. Eng. 86, 23962403 (2009).CrossRefGoogle Scholar
Shahinpoor, M., and Kim, K. J., Smart Mater. Struct. 13, 13621388 (2004).CrossRefGoogle Scholar
Giedt, W. H., and Tallerico, L. N., Welding J. 67, 299305 (1988).Google Scholar
Kim, J., Joy, D. C., and Lee, S.-Y., Microelectron. Eng. 84, 28592864 (2007).CrossRefGoogle Scholar
Chang, T. H. P., J. Vacc. Sci. Technol. 12, 12711275 (1975).CrossRefGoogle Scholar
Ploux, L., Anselme, K., Dirani, A., Ponche, A., Soppera, O., and Roucoules, V., Langmuir 25, 81618169 (2009).CrossRefGoogle Scholar
Steinbach, A., Tautzenberger, A., Schaller, A., Kalytta-Mewes, A., Tränkle, S., Ignatius, A., and Volkmer, D., ACS Appl. Mater. Interf. 4, 51965203 (2012).CrossRefGoogle Scholar