Skip to main content Accessibility help

Diamond Energy Levels and Photoemission Characteristics from 300 – 425 K

  • Susanna E. Challinger (a1), Iain D. Baikie (a1) and A. Glen Birdwell (a2)


The unique electronic structure of diamond and its excellent thermal properties allow a broad range of possible applications; from electron sources to RF electronics. However, knowledge of the surface energy levels is essential to produce efficient, high-quality devices. We investigate the valence band position and resulting negative electron affinity for hydrogen terminated diamond under ambient, low vacuum and ultra-high vacuum (UHV) conditions. There was a -0.5 eV change in valence band position causing a negative electron affinity shift from -1.1 eV under UHV to -0.6 eV in ambient pressure. We compare the photoemission current under each environment to predict the ability of the sample to be used as an electron source. The maximum emission was observed when the sample displayed the largest negative affinity. A scanning photoemission measurement is demonstrated to highlight the superior photoemission yield from the hydrogen terminated diamond surface compared to the stainless steel contact. A scanning Kelvin probe measurement is shown to illustrate a method of analyzing the contact potential difference across the diamond surface. Within high-power RF electronics, devices are likely to be operating at increased temperatures so knowledge of the impact of temperature on the energy levels is important. We study the valence band and Fermi level positions for hydrogen terminated diamond from room temperature (300K) to 425K under low and UHV conditions. The Fermi level moved below the valence band edge at increased temperature, illustrating the effect of the 2D hole gas at the surface. We also analyzed the photoemission characteristics and found an increase in yield with increasing temperature. The measurement techniques used to evaluate the energy levels of diamond: photoemission spectroscopy and Kelvin probe measurements, in ambient and vacuum, allow analysis to be completed in minutes. This offers an initial analysis alternative to elucidate more information and predict performance prior to the more time-consuming full device manufacture and characterization.


Corresponding author


Hide All
1.Hayashi, K., Yamanaka, S., Okushi, H. and Kajimura, K., Appl. Phys. Lett. 68(3), 376378 (1996).
2.Maier, F., Riedel, M., Mantel, B., Ristein, J. and Ley, L., Phys. Rev. Lett. 85(16), 34723475 (2000).
3.Nebel, C., Rezek, B. and Zrenner, A., Phys. Status Solidi A 201(11), 24322438 (2004).
4.Isberg, J., Hammersberg, J., Johansson, E., Wikström, T., Twitchen, D. J., Whitehead, A. J., Coe, S. E. and Scarsbrook, G. A., Science 297 (5587), 1670-1672 (2002).
5.Trew, R. J., Yan, J.-B. and Mock, P. M., Proc. IEEE 79 (5), 598620 (1991).
6.Liu, J., Ohsato, H., Wang, X., Liao, M. and Koide, Y., Sci Rep 6, 34757 (2016).
7.Kasu, M., Jpn. J. Appl. Phys. 56 (1S), 01AA01 (2016).
8.Kleshch, V. I., Purcell, S. T. and Obraztsov, A. N., Sci Rep 6, 7 (2016).
9.Pace, E., Di Benedetto, R. and Scuderi, S., Diam. Relat. Mat. 9 (3-6), 987993 (2000).
10.Harwell, J. R., Baikie, T. K., Baikie, I. D., Payne, J. L., Ni, C., Irvine, J. T. S., Turnbull, G. A. and Samuel, I. D. W., Phys. Chem. Chem. Phys. 18 (29), 1973819745 (2016).
11.Rietwyk, K. J., Keller, D. A., Majhi, K., Ginsburg, A., Priel, M., Barad, H.-N., Anderson, A. Y. and Zaban, A., Adv. Mater. Interfaces 4 (16), 1700136 (2017).
12.Baikie, I. D., Grain, A. C., Sutherland, J. and Law, J., Appl. Surf. Sci. 323, 4553 (2014).
13.Baikie, I. D., Grain, A., Sutherland, J. and Law, J., Phys. Status Solidi C 12 (3), 259262 (2015).
14.Rezek, B., Sauerer, C., Nebel, C. E., Stutzmann, M., Ristein, J., Ley, L., Snidero, E. and Bergonzo, P., Appl. Phys. Lett. 82 (14), 22662268 (2003).
15.Takeuchi, D., Kato, H., Ri, G. S., Yamada, T., Vinod, P. R., Hwang, D., Nebel, C. E., Okushi, H. and Yamasaki, S., Appl. Phys. Lett. 86(15), 3 (2005).
16.Spicer, W. E. and Herreragomez, A., in Proc. SPIE 2022, Photodetectors and Power Meters (October 15, 1993), Vol. 18.


Diamond Energy Levels and Photoemission Characteristics from 300 – 425 K

  • Susanna E. Challinger (a1), Iain D. Baikie (a1) and A. Glen Birdwell (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed