Skip to main content Accessibility help

Deposition of Cobalt Doped Zinc Oxide Thin Film Nano-Composites Via Pulsed Electron Beam Ablation

  • Asghar Ali (a1), Patrick Morrow (a2), Redhouane Henda (a1) and Ragnar Fagerberg (a3)


This study reports on the preparation of cobalt doped zinc oxide (Co:ZnO) films via pulsed electron beam ablation (PEBA) from a single target containing 20 w% Co on sapphire (0001) and silicon (100) substrates. The films have been deposited at various temperatures (350оC, 400оC, 450оC) and pulse frequencies (2 Hz, 4 Hz), under a background argon (Ar) pressure of about 3 mtorr, and an accelerating voltage of 14 kV. The surface morphology has been examined by atomic force microscopy (AFM) and scanning electron microscopy (SEM). According to SEM analysis, the films consist of nano-globules whose size is in the range of 80-178 nm. Energy dispersive x-ray spectroscopy (EDX) reveals that deposition is congruent and the prepared films contain ∼20±5 w% cobalt. It has been found that the nano-globules in the deposited films are cobalt-rich zones containing ∼70 w% Co. From x-ray photoelectron spectroscopy (XPS) analysis, Co 2p3/2 peaks indicate that the deposited films contain CoO (binding energy = 780.5 eV) as well as metallic Co (binding energy = 778.1-778.5 eV). X-ray diffraction (XRD) analysis supports the presence of metallic Co hcp phase (2ϴ = 44.47° and 47.43°) in the films.


Corresponding author


Hide All
[1] Wang, X, Ning., W, Hu, L. and Li, Y., Catalysis Communications 24, 61(2012).
[2] Poongodi, G., Anandan, P., Kumar, R. M and Jayavel, R., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 148, 237 (2015).
[3] Llorca, J., Homs, N. and de la Piscina, P.R., Journal of Catalysis 227, 556 (2004).
[4] Ueda, K., Tabata, H., and Kawaj, T., Applied Physics Letters 79, 988 (2001).
[5] Tuan, A.C., Bryan, J.D., Pakhomov, A.B., Shutthanandan., V., Thevuthasan., S., McCready, D.E., Gaspar, D., Engelhard, M.H., Rogers, J.W. Jr, Krishnan, K., Gamelin, D.R., and Chambers, S.A., Physical Review B 70, 054424 (2004).
[6] Sati, P., Schafer, S., Morhain, C., Deparis, C., and Stepanov, A., Superlattices and Microstructures 42, 191(2007).
[7] Song, C., Pan, S.N., Liu, X.J., Li, X.W., Zeng, F., Yan, W.S., He, B. and Pan, F., J. Phys.: Condens. Matter 19, 176229 (2007).
[8] Belghazi, Y., AitAouaj, M., Yadari, M.E., Schmerber, G., Bouille, C.U., Leuvrey, C., Colis, S., Abd-lefdil, M., Berrada, A. and Dinia, A., Microelectronics Journal 40, 265 (2009).
[9] Manouni, A.E., Tortosa, M., Manjon, F.J., Mollar, M., Mari, B. and S-Royo, J.F., Microelectronics Journal 40, 268 (2009).
[10] Lee, H-J., Jeong, S-E, Cho, C.R. and Park, C.H., Appl. Phys. Lett. 81, 4020 (2002).
[11] Harshavardhan, K.S. and Strikovski, M., Second-Generation HTS Conductors, ed. Goyal, A. (Springer, New York, 2005), p. 109.
[12] Mathis, J.E., and Christen, H.M., 2007, Physica C 459, 47 (2007).
[13] Ohring, M., The materials science of thin films: deposition and structure, 2nd ed. (Academic Press, 1992). pp. 195218.
[14] Liu, G.X., Shan, F.K., Lee, W.J., Shin, B.C., Shin, H.S., Kim, H.S., Kim, J.K., Ceramics International 34, 1015(2008).
[15] Ivill, M., Peartonm, S.J., Rawal, S., Leu, L., Sadik, P., Das, R., Hebard, A.F., Chisholm, M., Budai, J.D. and Norton, D.P., New Journal of Physics10, 065002(2008).
[16] Sakuma, H., Watanabe, Y., Aramaki, K., Yun, K.S., Ishii, K., Ikeda, Y. and Kondo, H. Materials Science and Engineering B 173, 7(2010).
[17] (Rob) Hui, S., Wu, M., Ge, S., Yan, D., Zhang, Y.D., Xiao, T.D., Yacaman, M. J., Miki-Yoshida, M. , Hines, W. A. and Budnick, J. I., Mat. Res. Soc. Symp. Proc. 755, DD5.20.1 (2003).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed