Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T16:30:12.440Z Has data issue: false hasContentIssue false

Dehydration Sensing of a Polyvinyl Alcohol Film via Plasmonic Nanoparticles

Published online by Cambridge University Press:  24 January 2019

Milana O. Lisunova*
Affiliation:
School of Materials Science and Engineering and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA30332, USA MicroElectronics-Photonics Program, Institute for Nanoscience and Engineering and Ralph E. Martin Department of Chemical Engineering, 3202 Bell Engineering Center, University of Arkansas, Fayetteville, AR72701, USA
Get access

Abstract

In situ, real-time monitoring of a dehydration of poly(vinyl alcohol) (PVA) film is researched. The technique based on the incorporation plasmonic nanocages (NCs) between the two identical layers of PVA, (PVA)/NCs/(PVA) film, and its sensitivity to the variation of the refractive index of the surrounding PVA film via desorption water. The dehydration time increases from 180 (s) to 1800 (s) as the content of the PVA in the films increases twice, from (PVA)/NCs/(PVA) to (PVA)2/NCs/(PVA)2. Such effect could be explained by different rate of the molecules desorption from the PVA based films. Specifically, the dehydration rate is of 0.22 (vol% per s) and 0.026 (vol% per s) for (PVA)/NCs/(PVA) and (PVA)2/NCs/(PVA)2 films, respectively. The dehydration rate constant reduces from -50×10-4 (s-1) to -4.3 ×10-4 (s-1) as the content of PVA increases from (PVA)/NCs/(PVA) to (PVA)2/NCs/(PVA)2 films, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tudos, A.J., Schasfoort, R.B.M.. Handbook of Surface Plasmon Resonance (RCS Publishing, Cambridge, 2008) p.1-14.Google Scholar
Lisunova, M., Mahmoud, M., Holland, N., Combs, Z., El-Sayed, M.A. and Tsukruk, V.V., J. Mater.Chem. 22, 16659-16753 (2012).CrossRefGoogle Scholar
Earl, S.K., James, T.D., Davis, T.J., McCallum, J.C., Marvel, R.E., Haglund, R. F. and Roberts, A., Opt. Express 21, 27503-27508 (2013).CrossRefGoogle Scholar
Kudo, K., Ishida, J., Syuu, G., Sekine, Y. and Ikeda-Fukazawa, T., J. Chem. Phys. 140, 044909 (2014).CrossRefGoogle Scholar
Teramura, Y., Kaneda, Y. and Iwata, H., Biomaterials 28, 4818-25 (2007).CrossRefGoogle Scholar
Veerabadran, N. G., Goli, P.L., Stewart-Clark, S.S., Lvov, Y.M. and Mills, D.K., Macromol. Biosci. 7, 877–88 (2007).CrossRefGoogle Scholar
Stuart, D. A., Haes, A., McFarland, A. D., Nie, S. and Van Duyne, R. P., SPIE 5327, 60-73 (2004).Google Scholar
Sherry, L. J., Jin, R. , Mirkin, C.A., Schatz, G.C. and Van Duyne, R. P., Nano Lett. 6, 2060-2065 (2006).CrossRefGoogle Scholar
Lisunova, M., Norman, J., Wei, X., Jenkins, S., Chen, J., Roper, D.K., Mater. Lett. 117, 241-243 (2014).CrossRefGoogle Scholar
Lisunova, M., Duncklin, J., Jenkins, S., Chen, J., Roper, D. K., RSC Adv. 5, 1571915727 (2015).CrossRefGoogle Scholar
Chen, J., Glaus, C., Laforest, R., Zhang, Q., Yang, M., Gidding, M., Welch, M.J., Xia, Y., Small 6, 811-817 (2010).CrossRefGoogle Scholar
Hu, M., Chen, J., Li, Z.Y., Au, L., Hartland, G.V., Li, X., Marqueze, M. and Xia, Y., Chem. Soc. Rev. 35, 1084-1094 (2006).CrossRefGoogle Scholar
Chen, J., Yang, M., Zhang, Q., Cho, E. C., Cobley, C. M., Kim, C., Glaus, C., Wang, L.V., Welch, M. and Xia, Y., Adv. Funct. Mater. 20, 3684-3694 (2010).CrossRefGoogle Scholar
Mahmoud, M. and El-Sayed, M. A., J. Am. Chem. Soc. 132, 12704-12710 (2010).CrossRefGoogle Scholar
Mahmoud, M.A. and El-Sayed, M. A., Nano Lett. 9, 3025-3031 (2010).CrossRefGoogle Scholar
Mudigoudra, B.S., Masti, S. P. and Chougale, R.B., Res. J.Recent Sci. 1, 83-86 (2012).Google Scholar
Baker, R.W., Membrane Technology and Application, 2nd ed. (John Wiley & Sons, Ltd., Chichester, 2004).CrossRefGoogle Scholar
Paul, D.R. and Robeson, L.M., Polymer 49, 3187-3204 (2008).CrossRefGoogle Scholar
Fuzek, J. F., Ind. Eng. Chem. Prod. Res. Dev. 24, 140-144 (1985).CrossRefGoogle Scholar