Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T18:52:53.706Z Has data issue: false hasContentIssue false

A Decade of Portable (Hand-Held) X-Ray Fluorescence Spectrometer Analysis of Obsidian in the Mediterranean: Many Advantages and Few Limitations

Published online by Cambridge University Press:  07 February 2017

Robert H. Tykot*
Affiliation:
Department of Anthropology, University of South Florida, Tampa, FL 33620, U.S.A.
*
*(Email: rtykot@usf.edu)

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Starting in 2007, a portable, hand-held X-ray fluorescence spectrometer was used to elementally analyze and determine the geological source of obsidian artifacts in the Mediterranean, effectively replacing the instruments used in my previous research studies - INAA, LA-ICP-MS, ED-XRF and an electron microprobe with WDS. Approximately 400 geological obsidian samples from the Mediterranean area, and 8500 obsidian artifacts from prehistoric sites in Italy, France, Croatia, Malta, Tunisia, Greece, Cyprus, Turkey, Israel, and Egypt have been analyzed non-destructively by pXRF. Overall, the pXRF can distinguish all of the individual sources, based on the composition of Fe and trace elements Rb, Sr, Y, Zr, and Nb, as well as assign most artifacts to specific subsources and thus addressing archaeological research hypotheses about trade and exchange in many different time periods.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

References

REFERENCES

Cann, J.R. and Renfrew, C., The characterization of obsidian and its application to the Mediterranean region, Proceedings of the Prehistoric Society 30, 111–33 (1964).Google Scholar
Tykot, R.H., Chemical fingerprinting and source-tracing of obsidian: the central Mediterranean trade in black gold, Accounts of Chemical Research 35, 618627 (2002).CrossRefGoogle ScholarPubMed
Tykot, R.H., Scientific methods and applications to archaeological provenance studies, in Physics Methods in Archaeometry. Proceedings of the International School of Physics “Enrico Fermi”, edited by Martini, M., Milazzo, M. and Piacentini, M. (Società Italiana di Fisica, Bologna, 2004) pp. 407432.Google Scholar
Tykot, R.H., Obsidian in Prehistory, in Encyclopedia of Glass Science, Technology, History, and Culture, edited by Richet, P. (John Wiley & Sons, Inc., 2017).Google Scholar
Hallam, B.R., Warren, S.E., Renfrew, C., Obsidian in the western Mediterranean: characterisation by neutron activation analysis and optical emission spectroscopy, Proceedings of the Prehistoric Society 42, 85110 (1976).CrossRefGoogle Scholar
Tykot, R.H., Characterization of the Monte Arci (Sardinia) obsidian sources, Journal of Archaeological Science 24, 467479 (1997).Google Scholar
Crisci, G.M., Ricq-De Bouard, M., Lanzafame, U., De Francesco, A.M., Nouvelle méthode d’analyse et provenance de l’ensemble des obsidiennes neolithiques du Midi de la France, Gallia Préhistoire 36, 299327 (1994).Google Scholar
Francaviglia, V., Characterization of Mediterranean obsidian sources by classical petrochemical methods, Preistoria Alpina 20, 311332 (1986).Google Scholar
De Francesco, A.M., Crisci, G.M., Bocci, M., Non-destructive analytic method using XRF for determination of provenance of archaeological obsidians from the Mediterranean area: A comparison with traditional XRF methods, Archaeometry 50, 337350 (2008).Google Scholar
Le Bourdonnec, F.-X., Poupeau, G., Luglie, C., SEM-EDS analysis of western Mediterranean obsidians: a new tool for Neolithic provenance studies, C. R. Geoscience 338, 11501157 (2006).Google Scholar
Gratuze, B., Obsidian characterization by laser ablation ICP-MS and its application to prehistoric trade in the Mediterranean and the Near East: Sources and distribution of obsidian with the Aegean and Anatolia, Journal of Archaeological Science 26, 869881 (1999).CrossRefGoogle Scholar
Barca, D., De Francesco, A.M., Crisci, G.M., Application of Laser Ablation ICP-MS for characterization of obsidian fragments from peri-Tyrrhenian area, Journal of Cultural Heritage 8(2), 141150 (2007).Google Scholar
Speakman, R.J., Glascock, M.D., Tykot, R.H., Descantes, C., Thatcher, J.J., Skinner, C.E., Lienhop, K.M., Selected applications of laser ablation ICP-MS to archaeological research, in Archaeological Chemistry: Analytical Methods and Archaeological Interpretation, edited by Glascock, M.D., Speakman, R.J., Popelka-Filcoff, R.S. (ACS Publication Series 968, American Chemical Society, Washington, DC, 2007) pp. 275296.CrossRefGoogle Scholar
Tykot, R.H., Using non-destructive portable X-ray fluorescence spectrometers on stone, ceramics, metals, and other materials in museums: advantages and limitations. Applied Spectroscopy 70(1), 4256 (2016).CrossRefGoogle Scholar
Tykot, R.H., Sourcing of Sardinian obsidian collections in the Museo Preistorico-Etnografico ‘Luigi Pigorini’ using non-destructive portable XRF, in L’ossidiana del Monte Arci nel Mediterraneo. Nuovi apporti sulla diffusione, sui sistemi di produzione e sulla loro cronologia Atti del 5̊ Convegno internazionale (Pau, Italia, 27–29 Giugno 2008), edited by Lugliè, C. (NUR, Ales, 2010) pp. 8597.Google Scholar
Tykot, R.H., Lai, L., Tozzi, C., Intra-site obsidian subsource patterns at Contraguda, Sardinia (Italy), in Proceedings of the 37th International Symposium on Archaeometry, 13th-16th May 2008, Siena, Italy, edited by Turbanti-Memmi, I. (Springer, 2010) pp. 321328.Google Scholar
Tykot, R.H., Freund, K.P., Vianello, A., Source analysis of prehistoric obsidian artifacts in Sicily (Italy) using pXRF, in Archaeological Chemistry VIII. ACS Symposium Series 1147, 195210 (2013). Edited by Armitage, R.A. and Burton, J.H..Google Scholar
Tykot, R.H., Obsidian use and trade in the Adriatic, in The Adriatic, a sea without borders: communication routes of populations in 6000 BC, edited by Visentini, P. and Podrug, E. (Civici Musei di Udine, Museo Friulano di Storia Naturale, 2014) pp. 171181, 224–225.Google Scholar
Goodale, N., Bailey, D.G., Jones, G.T., Prescott, C., Scholz, E., Stagliano, N., Lewis, C., pXRF: a study of inter-instrument performance, Journal of Archaeological Science 39, 875883 (2012).Google Scholar
Forster, N. and Grave, P., Non-destructive PXRF analysis of museum-curated obsidian from the Near East, Journal of Archaeological Science 39, 728736 (2012).CrossRefGoogle Scholar
Shugar, A.N., Portable X-ray fluorescence and archaeology: Limitations of the instrument and suggested methods to achieve desired results, in Archaeological Chemistry VIII. ACS Symposium Series 1147, 173195 (2013). Edited by Armitage, R.A. and Burton, J.H..Google Scholar
Liritzis, I. and Zacharias, N., Portable XRF of archaeological artifacts: Current research, potentials and limitations, in X-ray Fluorescence Spectrometry (XRF) in Geoarchaeology, edited by Shackley, M.S. (Springer, New York, 2013) pp. 109142.Google Scholar
Frahm, E. and Doonan, R.C.P., The technological versus methodological revolution of portable XRF in archaeology, Journal of Archaeological Science 40, 14251434 (2013).Google Scholar
Frahm, E., Doonan, R., Kilikoglou, V., Handheld portable X-ray fluorescence of Aegean obsidians, Archaeometry 56, 228260 (2014).Google Scholar
Milič, M., PXRF characterisation of obsidian from central Anatolia, the Aegean and central Europe, Journal of Archaeological Science 41, 285296 (2014).Google Scholar
Francaviglia, V., Ancient obsidian sources on Pantelleria (Italy). Journal of Archaeological Science 15, 109–22 (1988).Google Scholar
Tykot, R.H., Setzer, T., Glascock, M.D., Speakman, R.J., Identification and characterization of the obsidian sources on the island of Palmarola, Italy, Geoarchaeological and Bioarchaeological Studies 3, 107111 (2005).Google Scholar
Tykot, R.H., Iovino, M.R., Martinelli, M.C., Beyer, L., Ossidiana da Lipari: le fonti, la distribuzione, la tipologia e le tracce d’usura, in Atti del XXXIX Riunione Scientifica dell’Istituto Italiano di Preistoria e Protostoria: Materie prime e scambi nella preistoria italiana, Firenze, 25–27 November 2004, 592597 (2006).Google Scholar
Tykot, R.H. and Ammerman, A.J., New directions in central Mediterranean obsidian studies, Antiquity 71(274), 10001006 (1997).Google Scholar
Freund, K.P. and Tykot, R.H., Lithic technology and obsidian exchange networks in Bronze Age Nuragic Sardinia (Italy), Archaeological and Anthropological Sciences 3, 151164 (2011).Google Scholar
Freund, K.P., Tykot, R.H., Vianello, A., Blade production and the consumption of obsidian in Stentinello period Neolithic Sicily, Comptes Rendus Palevol 14, 207217 (2015).Google Scholar
Tykot, R.H., Obsidian finds on the fringes of the central Mediterranean: exotic or eccentric exchange?, in Exotica in the Prehistoric Mediterranean, edited by Vianello, A. (Oxbow Books, 2011) pp. 3344.Google Scholar
Tykot, R.H., Obsidian procurement and distribution in the central and western Mediterranean, Journal of Mediterranean Archaeology 9, 3982 (1996).Google Scholar
Tykot, R.H., L’esatta provenienza dell’ossidiana e i modelli di diffusione nel Mediterraneo centrale durante il Neolitico, in L’ossidiana del Monte Arci nel Mediterraneo: recupero dei valori di un territorio, a cura di Castelli, P., Cauli, B., Di Gregorio, F., Lugliè, C., Tanda, G. & Usai, C. (Tipografia Ghilarzese, Ghilarza, 2004) pp. 118132.Google Scholar
Lea, V., The diffusion of obsidian in the northwestern Mediterranean: toward a new model of the Chassey culture? Journal of Mediterranean Archaeology 25, 147173 (2012).CrossRefGoogle Scholar