Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-04T14:06:43.863Z Has data issue: false hasContentIssue false

Correlation of Microstructure with Hard Magnetic Properties of Glass-Coated MnBi Microwires

Published online by Cambridge University Press:  02 January 2019

J. Zamora*
Affiliation:
Departamento de Materiales Metálicos y Cerámicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, CP 04510. Mexico. Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, 28049Madrid, Spain.
I. Betancourt
Affiliation:
Departamento de Materiales Metálicos y Cerámicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, CP 04510. Mexico.
A. Jiménez
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, 28049Madrid, Spain.
R. Pérez del Real
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, 28049Madrid, Spain.
M. Vázquez
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, 28049Madrid, Spain.
*
*Corresponding author. E-mail: zamenj@iim.unam.mx
Get access

Abstract

In this work, we study the hard-magnetic properties and its influence on the microstructure of MnBi-based glass-coated microwires obtained by Taylor-Ulitovsky process, as well as their magnetic and thermal dependence in the range of 200 K-360 K. We obtained glass-coated microwires pieces trough of the Taylor-Ulitovsky process. Glass-coated microwires exhibited the formation of Low-Temperature Intermetallic Phase (LTIP)-MnBi, as confirmed by scanning electron microscopy (SEM). Energy Dispersive Spectroscopy (EDS) elemental chemical composition analysis showed LTIP regions interspersed within Bi- and Mn-rich areas. Magnetic properties were determined by vibrating sample magnetometry (VSM), for which a considerable intrinsic coercivity field (iHc) up to 6000 Oe at 360 K, together with a saturation magnetization (Ms) of 57.49 emu/cm3. Therefore, this combination of properties renders LTIP is a promising precursor with potential for applications at high temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Waseda, Y., Ueno, S., Hawigara, M. and Aust, K. T.. Progr. Mat. Sci. 34 (1990) 149.CrossRefGoogle Scholar
Ovari, T.A., Corodeanu, S., Chiriac, H.. J. Appl. Phys. 109 (2011) 07D502.CrossRefGoogle Scholar
Vázquez, M., in: Kronmüller, H., Parkin, S. (Eds.). Handbook of Magnetism and Advanced Magnetic Materials, vol. 4, Wiley, New York, (2007), pp. 21932226.Google Scholar
Zhukov, A., Gonzalez, J., Vazquez, M., Larin, V., Torcunov, A., in: Nalwa, H.S. (Ed.). Encyclopedia of Nanoscience and Nanotechnology, (Chapter 62) American Scientific Publishers, New York, (2004), pp. 23.Google Scholar
Vázquez, M.. Physica B, 299 (2001) 302313.CrossRefGoogle Scholar
Guo, X., Chen, X., Altounian, Z., Strom-Olsen, J. O.. Phys. Rev. B, 46 (1992) 1457814582.CrossRefGoogle Scholar
Williams, H. J., Sherwood, R. C. and Boothby, O. L.. J. Appl. Phys, 28 (1957) 445447.CrossRefGoogle Scholar
Ping Liu, J., Fullerton, Eric, Gutfleishch, Oliver, Sellmyer, David J.: Nanoscale Magnetic Materials and Applications, first edition, Springer, US, (2009), pp. 476479.Google Scholar
Coey, J.M.D.. IEEE Trans. Magn, 47 (2011) 46714681.CrossRefGoogle Scholar
Andresen, A. F.. Acta. Chem. Scand, 21 (1967) 15431554.CrossRefGoogle Scholar
Mitsui, Y., Umetsu, R. Y., Takahashi, K. and Koyoma, K.. J. Magn. Magn. Mater. 453 (2018) 231235.CrossRefGoogle Scholar
Gabay, A. M., Hadjipanayis, G. C. and Cui, L.. AIP Advances. 8 (2018) 056702.Google Scholar
Kharel, P., Skomski, R., Kirby, R. D., Sellmyer, D. J.. J. Appl. Phys , 107 (2010) 09E303.CrossRefGoogle Scholar
Yoshida, H., Shima, T., Takahashi, T. and Fujimori, H.. Mater. Trans. JIM. 40 (1999) 455458.CrossRefGoogle Scholar
Isogai, K., Matsuura, M., Tezuca, N. and Sugimoto, S.. Mater. Trans. JIM, 54 (2013) 16731677.CrossRefGoogle Scholar
Zhang, D. T., Geng, W. T., Yue, M., Liu, W. Q., Zhang, J. X., Sundararajan, J. A. and Qiang, Y.. J. Magn. Magn. Mater , 324 (2012) 18871890.CrossRefGoogle Scholar
Nguyen, Phi-Khan, Jin, Sungho and Berkowitz, Ami E.. IEEE Trans. Magn, 49 (2013) 33873390.CrossRefGoogle Scholar
Nguyen, Phi-Khan, Jin, Sungho and Berkowitz, Ami E.. J. Appl. Phys. 115 (2014) 17A756.CrossRefGoogle Scholar
Kirkeminde, A., Shen, J., Gong, M.. Cui, J. and Ren, S.. Chem. Mater , 27 (2015) 46774681.CrossRefGoogle Scholar
Zamora, J., Betancourt, I., Figueroa, I. A.. J. Supercond. Nov. Magn. 31 (2017) 873878.CrossRefGoogle Scholar
Betancourt, I., Zamora, J., Jiménez, A., Pérez del Real, R. and Vázquez, M.. Scripta Mater . 153 (2018) 4043.CrossRefGoogle Scholar
Saito, T., Nishimura, R., Nishio-Hamane, D.. J. Magn. Magn. Mater. 349 (2014) 914.CrossRefGoogle Scholar
Zhang, D.T., Cao, S., Yue, M., Liu, W.Q., Zhang, J.X., Qiang, Y.. J. Appl. Phys. 109 (2011) 07A722.Google Scholar
Kronmüller, H., Yang, J. B. and Goll, D.. J. Phys.: Condens. Matter. 26 (2014) 064210.Google Scholar
Curcio, C., Olivetti, E.S., Martino, L., Kupferling, M., V. Physica Procedia, 75 (2015)12302137.CrossRefGoogle Scholar
Chen, T. and Stutius, W. E.. IEEE Trans Magn. 10 (1974) 581586.CrossRefGoogle Scholar