Skip to main content Accessibility help
×
Home

Comparative Study of the Photostability of Two Glycine Molecules in Different Medium

  • Satish Kumar (a1) and Ashok Jangid (a1)

Abstract

The photostability of two glycine molecules has been investigated using quantum mechanical methods i.e. at CASSCF/NEVPT2 level theory. It is found that the molecule in water shows vast photostability as a comparison to vacuum. The energies are calculated around HOMO and LUMO orbital. The NEVPT2 computed energies are reasonably matched with experimental results. The study shows that the molecule returns from higher electronically excited states to ground state through CI and AC crossings and these crossings provide a minimum energy path along derivative coupling and gradient differences vector.

Copyright

Corresponding author

References

Hide All
1.Crespo-Hernández, C.E., et al. , Ultrafast excited-state dynamics in nucleic acids . Chemical reviews, 2004. 104(4): p. 1977-2020.
2.Sobolewski, A.L. and Domcke, W., Computational Studies of the Photophysics of Hydrogen-Bonded Molecular Systems . The Journal of Physical Chemistry A, 2007. 111(46): p. 11725-11735.
3.Dass, A.V., Cottin, H., and Brack, A., Photochemistry and Photoreactions of Organic Molecules in Space, in Biosignatures for Astrobiology. 2019, Springer. p. 205-222.
4.Wiebeler, C., et al. , Excitation energies of canonical nucleobases computed by multiconfigurational perturbation theories . Photochemistry and photobiology, 2017. 93(3): p. 888-902.
5.J. Von Neumann, E.W., Conical intersection theory and Computational. Physik. Z, 1929. 30.
6.Hammes-Schiffer, S., Mixed quantum/classical dynamics of hydrogen transfer reactions . The Journal of Physical Chemistry A, 1998. 102(51): p. 10443-10454.
7.Roth, J.P., Lovell, S., and Mayer, J.M., Intrinsic barriers for electron and hydrogen atom transfer reactions of biomimetic iron complexes . Journal of the American Chemical Society, 2000. 122(23): p. 5486-5498.
8.Frutos, L.M., et al. , Photoinduced Electron and Proton Transfer in the Hydrogen-Bonded Pyridine− Pyrrole System . The Journal of Physical Chemistry B, 2007. 111(22): p. 6110-6112.
9.Marazzi, M., et al. , First principles study of photostability within hydrogen-bonded amino acids . Physical Chemistry Chemical Physics, 2011. 13(17): p. 7805-7811.
10.Read, R.J., et al. , Structure of the complex of Streptomyces griseus protease B and the third domain of the turkey ovomucoid inhibitor at 1.8-A resolution . Biochemistry, 1983. 22(19): p. 4420-33.
11.Neese, F., Software update: the ORCA program system, version 4.0 . Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018. 8(1): p. e1327.
12.Crespo-Otero, R., et al. , Photo-stability of peptide-bond aggregates: N-methylformamide dimers . Physical Chemistry Chemical Physics, 2014. 16(35): p. 18877-18887.
13.Serrano-Andrés, L. and Fülscher, M.P., Charge transfer transitions in neutral and ionic polypeptides: A theoretical study . The Journal of Physical Chemistry B, 2001. 105(38): p. 9323-9330.

Keywords

Comparative Study of the Photostability of Two Glycine Molecules in Different Medium

  • Satish Kumar (a1) and Ashok Jangid (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed