Skip to main content Accessibility help
×
Home

A combinatorial approach to enhance the biocompatibility and heating efficiency of magnetic hyperthermia- Serum Albumin conjugated ferrimagneticmagnetite nanoparticles

  • Viveka Kalidasan (a1), Xiaoli Liu (a1), Jun Ding (a1), Ananya Dasgupta (a2) and Sreedharan Sajikumar (a2)...

Abstract

Magnetic hyperthermia is a non-invasive cancer treatment method which is used synergistically with the current cancer treatments. Improved biocompatibility and enhanced heating characteristics are the pressing challenges to be addressed in magnetic hyperthermia. Through a novel combinatorial approach, we have attempted to address both the challenges. Ferrimagneticmagnetite nanoparticles (FMNPs)of size 50 nm were synthesized by thermal decomposition method and were converted to hydrophilic phase by 3-Aminopropyltrimethoxysilane (APTMS). Serum Albumin (SA) from rat was conjugated over the APTMS-FMNPs to convert to biocompatible phase. The preliminary haemolysis experiments show that SA-FMNPs are non-haemolytic (1.2 % haemolysis). It is observed from the magnetic heating experiments that due to better colloidal stability, the Specific Absorption Rate value of the SA-FMNPs are higher (2100 W/g) than the FMNPs without SA (1400 W/g). Thus we report here that SA conjugation over FMNPs (with a high saturation magnetization of 75 emu/g) provides a novel combinatorial approach to enhance both the biocompatibility and the SAR value for magnetic hyperthermia.

Copyright

Corresponding author

*Corresponding Author (msedingj@nus.edu.sg)

References

Hide All
1. Mamiya, H., Jeyadevan, B., Scientific Reports 1,17(2011).
2. Siegal, R., Ma, J., Zou, Z., Jemal, A., CA: A Cancer Journal for Clinicians 64,929(2014).
3. Guistini, A.J., Petryk, A.A., Cassim, S.M., Tate, J.A., Baker, I., Hookes, P.J., NanoLife 17, 1732 (2010).
4. Kobayashi, T., Biotechnol J. 6, 13421347 (2011).
5. Yousef, H., al-Ramadi, B., Issa, B., Qadril, S., Hayekl, S., Hijaze, H., Nature precedings, (2008).
6. Shinkai, M., Biosci.Bioeng. 100, 111(2005).
7. Mitsumori, M., Hiraoka, M., Shibata, T., Okuno, Y., Nagata, Y., Nishimura, Y., Abe, M., Hasegawa, M., Nagae, H., Hepato Gastroenterology 43, 14311437(1996).
8. Gupta, A.K., M.Gupta,Biomaterials 26, 39954021(2005).
9. Chastellain, M., Petri, A., Gupta, A., Rao, K.V., Hofmann, H., Adv.Eng.Mater. 6, 235241(2004).
10. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L.V., and Muller, R.N., Chem.Rev. 108, 20642110 (2008).
11. Herranz, F., Ruiz-Cabello, J., Morales, M.P., Roca, A.G., Vilar, R., Contrast Media Mol. Imaging 3,215–222(2008).
12. Herranz, F., Schmidt-Weber, C.B., Shamji, M.H., Narkus, A., Ruiz-Cabello, J., Vilar, R., Contrast Media Mol. Imaging 7, 435439 (2012).
13. Salinas, B., RuizCabello, J., Morales, M.P., Herranz, F., Nanobiomater. 1, 166172 (2012).
14. Dennis, C.L., et al. , Nanotechnology 20, 395103(2009).
15. Verde, E.L., et al. , AIP Advances 2, 032120032142 (2012).
16. Carrey, J., Mehdaoui, B., Respaud, M., J. Appl. Phys. 109, 083921083937 (2011).
17. Seemann, K.M., Kuhn, B., Biomedical Optics Express, 5, 24462457 (2014).
18. Seemann, K.M., Luysberg, M., Révay, Z., Kudejova, P., Sanz, B., Cassinelli, N., Loidl, A., Ilicic, K., Multhoff, G., Schmid, T.E., Journal of Controlled Release 197, 131137 (2015).
19. Liu, Y., Welch, M.J., Bioconjug.Chem., 23, 671682 (2012).
20. Deng, Y-H., Wang, C-C., Hu, J-H., Yang, W.L., Fu, S-K., Colloids Surf. Physicochem. Eng. Asp. 262, 8793(2005).
21. Keshavarz, M., Ghasemi, Z., Journal of Physical and Theoretical Chemistry 8, 8595 (2011).
22. Samanta, B., Yan, H., Fischer, N.O., Shi, J., Jerry, D. J., Rotelloa, V.M., J Mater Chem., 18(11), 12041208 (2008).
23. Xie, J., Chen, K., Huang, J., Lee, S., Wang, J., Gao, J., Li, X., Chen, X., Biomaterials 31, 30163022 (2010).
24. Kalidasan, V., Liu, X.L., Tun, S.H., Yang, Y., Ding, J., Nanomicroletters (In Press)
25. Gibbs, R. A. et al. , Nature 428, 493521 (2004).
26. Hankins, J., Journal of Infusion Nursing 29, 260265(2009).
27. Hirayama, K., Akashi, S., Furuya, M., Fukuhara, K., Biochemicaland Biophysical Research Communications 173, 639–46 (1990).
28. Lee, J-H, Jang, J-T, Choi, J-S, Moon, S.H., Noh, S-H, Kim, J-W, Kim, J-G, Kim, I-S, Park, K., Cheon, J., Nature Nanotechnology 6, 418422(2011).
29. Luisetal, C., Scientific Reports 3, 18(2013).
30. Wu, W., Wu, Z., Yu, T., Jiang, C. Kim, W.S., Sci. Technol. Adv. Mater. 16, (2015).
31. Qiao, R., Yang, C., Gao, M., J. Mater. Chem., 19, 62746293 (2009).
32. Baaziz, W., Pichon, B.P., Fleutot, S., Liu, Y., Lefevre, C., Greneche, J-M., Toumi, M., Mhiri, T., Colin, S. B., J. Phys. Chem. C 118, 37953810 (2014).
33. Guardia, P., Labarta, A., Batlle, X., J. Phys. Chem. C 115, 390 (2010).
34. Hufschmid, R., Arami, H., Ferguson, R. M., Gonzales, M., Teeman, E., Brush, L. N., Browning, N.D., Krishnan, K.M., Nanoscale 7, 1114211154 (2015).
35. Priya, C.L., Kumar, G., Karthik, L., and Rao, K.V.B., Journal of Agricultural Technology 8, 143156 (2012).
36. Nakaya, M., Nishida, R., Muramatsu, A., Molecules 19, 1139511403 (2014).
37. Ling, D., Lee, N., Hyeon, T., Acc.Chem.Res. 48, 12761285(2015).
38. Hu, A., Apblett, A., Lecture Notes in Nanoscale Science and Technology 22, (2014).
39. Kouassi, G.K. and Irudayaraj, J., Anal. Chem. 78, 32343241 (2006).
40. Etheridge, M.L., Hurley, K.R., Zhang, J., Jeon, S., Ring, H.L., Hogan, C., Haynes, C.L., Garwood, M., Bischof, J.C., Technology (Singap World Sci) 2,214–228(2014).
41. Carlosetal, M-B., Scientific Reports 3, (2013).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed