Skip to main content Accessibility help
×
Home

Choice of Polymer Matrix for a Fast Switchable III-V Nanowire Terahertz Modulator

  • Sarwat A. Baig (a1), Jessica L. Boland (a2), Djamshid A. Damry (a2), Hoe H Tan (a3), Chennupati Jagadish (a3), Michael B. Johnston (a2) and Hannah J Joyce (a1)...

Abstract

Progress in ultrafast terahertz (THz) communications has been limited due to the lack of picosecond switchable modulators with sufficient modulation depth. Gallium arsenide nanowires are ideal candidates for THz modulators as they absorb THz radiation, only when photoexcited – giving the potential for picosecend speed switching and high modulation depth. By embedding the nanowires in a polymer matrix and laminating together several nanowire–polymer films, we increase the areal density of nanowires, resulting in greater modulation of THz radiation. In this paper, we compare PDMS and Parylene C polymers for nanowire encapsulation and show that a high modulation depth is possible using Parylene C due to its thinness and its ability to be laminated. We characterize the modulator behavior and switching speed using optical pump–THz probe spectroscopy, and demonstrate a parylene–nanowire THz modulator with 13.5% modulation depth and 1ps switching speed.

Copyright

Corresponding author

*(Email: sb971@cam.ac.uk)

References

Hide All
[1] Tonouchi, M., Nat. Photonics. 1, 97 (2007).
[2] Johnston, M. B., Dowd, A., Driver, R., Linfield, E. H., Davies, A. G., and Whittaker, D. M., Semicond. Sci. Technol. 19, S449 (2004).
[3] Peng, K., Parkinson, P., Fu, L., Gao, Q., Jiang, N., Guo, Y., Wang, F., Joyce, H. J., Boland, J. L., Tan, H. H., Jagadish, C., and Johnston, M. B., Nano Lett. 15, 206 (2015).
4] Kleine-Ostmann, T. and Nagatsuma, T., J Infrared Milli Terahz Waves. 32, 143 (2011).
[5] Rahm, M., Li, J., and Padilla, W. J., J Infrared Milli Terahz Waves, 34, 1 (2013).
[6] Liang, G., Hu, X., Yu, X., Shen, Y., Li, L. H., Davies, A. G., Linfield, E. H., Liang, H. K., Zhang, Y., Yu, S. F., and Wang, Q. J., ACS Photonics. 2, 1559 (2015).
[7] Docherty, C. J., Stranks, S. D., Habisreutinger, S. N., Joyce, H. J., Herz, L. M., Nicholas, R. J., and Johnston, M. B., J. Appl. Phys. 115, 13 (2014).
[8] Joyce, H. J., Boland, J. L., Davies, C. L., Joyce, H. J., Docherty, C. J., Gao, Q., and Tan, H. H., Nanotech. 7, 214006 (2013).
[9] Joyce, H. J., Gao, Q., Tan, H. H., Jagadish, C., Kim, Y., Zou, J., Smith, L. M., Jackson, H. E., Yarrison-Rice, J. M., Parkinson, P., and Johnston, M. B., Prog. Quantum Electron. 35, 23 ( 2011).
[10] Parkinson, P., Joyce, H. J., Gao, Q., Tan, H. H., Zhang, X., Zou, J., Jagadish, C., Herz, L. M., and Johnston, M. B., Nano Lett. 9, 1 (2009).
[11] Parkinson, P., Lloyd-hughes, J., Gao, Q., Tan, H. H., Jagadish, C., Johnston, M. B., and Herz, L. M., Nano Lett. 7, 2162 (2007).
[12] Meng, E., Li, P.-Y., and Tai, Y.-C., J. Micromech. Microeng. 18, 45004, (2008).
[13] Park, H., Seo, K., and Crozier, K. B., Appl. Phys. Lett. 101, 193107 (2012).
[14] Noh, H., Moon, K., Cannon, A., Hesketh, P. J., and Wong, C. P., J. Micromech. Microeng. 14, 625 (2004).
[15] Joyce, H. J., Parkinson, P., Jiang, N., Docherty, C. J., Gao, Q., Tan, H. H., Jagadish, C., Herz, L. M., and Johnston, M. B., Nano Letts. 14, 5989 (2014).
[16] Joyce, H. J., Boland, J. L., Davies, C. L., Baig, S. A., and Johnston, M. B., Semicond. Sci. Technol. 31,1 (2016).
[17] Titova, L. V, Hoang, T. B., Jackson, H. E., Joyce, L. M. S. M. Y. K. J., Tan, H. H., Jagadish, C., V Titova, L., Hoang, T. B., Jackson, H. E., Smith, L. M., and Kim, Y., Appl. Phys. Lett., 1, 173126 (2006).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed