Skip to main content Accessibility help
×
Home

Carbon Nanoscrolls at High Impacts: A Molecular Dynamics Investigation

  • José Moreira de Sousa (a1), Leonardo Dantas Machado (a1) (a2), Cristiano Francisco Woellner (a1), Pedro Alves da Silva Autreto (a1) (a3) and Douglas S. Galvao (a1)...

Abstract

The behavior of nanostructures under high strain-rate conditions has been object of interest in recent years. For instance, recent experimental investigations showed that at high velocity impacts carbon nanotubes can unzip resulting into graphene nanoribbons. Carbon nanoscrolls (CNS) are among the structures whose high impact behavior has not yet been investigated. CNS are graphene membranes rolled up into papyrus-like structures. Their unique open-ended topology leads to properties not found in close-ended structures, such as nanotubes. Here we report a fully atomistic reactive molecular dynamics study on the behavior of CNS colliding at high velocities against solid targets. Our results show that the velocity and scroll axis orientation are key parameters to determine the resulting formed nanostructures after impact. The relative orientation of the scroll open ends and the substrate is also very important. We observed that for appropriate velocities and orientations, the nanoscrolls can experience large structural deformations and large-scale fractures. We have also observed unscrolling (scrolls going back to planar or quasi-planar graphene membranes), unzip resulting into nanoribbons, and significant reconstructions from breaking and/or formation of new chemical bonds. Another interesting result was that if the CNS impact the substrate with their open ends, for certain velocities, fused scroll walls were observed.

Copyright

Corresponding author

References

Hide All
1. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V, Grigorieva, I. V, and Firsov, A. A., Science, 2004, 306, 666.
2. Vinod, S., Tiwary, C. S., Autreto, P. A. S., Taha-Tijerina, J., Ozden, S., Chipara, A. C., Vajtai, R., Galvao, D. S., Narayanan, T. N., and Ajayan, P. M., Nature Commun., 2014, 5, 4541.
3. Lee, J.-H., Loya, P. E., Lou, J., and Thomas, E. L., Science, 2014, 346, 1092.
4. Ozden, S., Autreto, P. A. S., Tiwary, C. S., Khatiwada, S., Machado, L. D., Galvao, D. S., Vajtai, R., Barrera, E. V., and Ajayan, P. M.. Nano Letters, 2014, 14, 4131.
5. Viculis, L. M., Mack, J. J., and Kaner, R. B., Science, 2003, 299, 1361.
6. Tomanek, D., Physica B, 2002, 323, 86.
7. Braga, S. F., Coluci, V. R., Legoas, S. B., Giro, R., Galvao, D. S., and Baughman, R. H., Nano Lett., 2004, 4, 881.
8. Martins, B. V. C. and Galvao, D. S., Nanotechnology, 2010, 21, 075710.
9. Perim, E., Machado, L. D. and Galvao, D. S., Frontiers in Materials, 2014, 1, 31.
10. Jayasena, B., Subbiah, S., and Reddy, C. D., J. Micro and Nano-Manufact., 2014, 2, 011003.
11. Rurali, R., Coluci, V. R., and Galvao, D. S., Phys. Rev. B, 2006, 74, 085414.
12. Coluci, V. R., Braga, S. F., Baughman, R. H., and Galvao, D. S., Phys. Rev. B, 2007, 75, 125404.
13. Perim, E. and Galvao, D. S., Nanotechnology 2009, 20, 335702.
14. Van Duin, A. C. T., Dasgupta, S., Lorant, F., and Goddard, W. A., J. Phys. Chem. A, 2001, 105, 9396.
15. Plimpton, S., J. Comp. Phys., 1995, 117, 1.
16. http://www.Lammps.sandia.gov. Sandia National Laboratories, LAMMPS Users Manual, 2014, vol. 209.

Keywords

Carbon Nanoscrolls at High Impacts: A Molecular Dynamics Investigation

  • José Moreira de Sousa (a1), Leonardo Dantas Machado (a1) (a2), Cristiano Francisco Woellner (a1), Pedro Alves da Silva Autreto (a1) (a3) and Douglas S. Galvao (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed