Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T14:18:53.358Z Has data issue: false hasContentIssue false

Biomimetic tough helicoidally structured material through novel electrospinning based additive manufacturing

Published online by Cambridge University Press:  15 July 2019

Komal Agarwal
Affiliation:
Xtreme Materials Laboratory (XML), Singapore University of Technology and Design, Singapore487372
Rahul Sahay
Affiliation:
Xtreme Materials Laboratory (XML), Singapore University of Technology and Design, Singapore487372
Avinash Baji*
Affiliation:
La Trobe University, Bundoora, Australia, VIC, 3086
Arief S. Budiman*
Affiliation:
Xtreme Materials Laboratory (XML), Singapore University of Technology and Design, Singapore487372
Get access

Abstract

Natural structural materials (NSMs) such as nacre, teeth, bones and crustacean exoskeleton are usually made of weak biomaterials arranged in specific structural design imparting them remarkable mechanical characteristics. Such hierarchical structural layouts found in nature encourage designing of mechanically desirable synthetic structural materials (SSMs). Among variety of natural hierarchical layouts, this paper specifically focuses on helicoidal architectural design found in the tough dactyl club of mantis shrimp. We first decode the mechanics behind helicoidal microstructural design and document the development of impact resistant macroscale helicoidal architectured synthetic structural materials (HA-SSMs). Next, near-field electrospinning technique (NFES)- both melt (polycaprolactone) and solution (polyvinylidene fluoride) type has been discussed in detail, as a novel method for developing lab scale 3D biomimetic HA-SSMs in micro-nanoscale. Further, the effect of the helical arrangement, size of substructures and surface treatment on strength and toughness of NFES fabricated HA-SSMs samples is analysed.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yang, W., Chen, I. H., Gludovatz, B., Zimmermann, E. A., Ritchie, R. O., & Meyers, M. A., Adv. Mater. 25, 3148 (2013).CrossRefGoogle Scholar
Naleway, S. E., Porter, M. M., McKittrick, J., & Meyers, M. A., Adv. Mater. 27, 54555476 (2015).CrossRefGoogle Scholar
Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P., & Ritchie, R. O., Nat. Mater. 14, 23 (2015).CrossRefGoogle Scholar
Ashby, M. F., Gibson, L. J., Wegst, U., & Olive, R., Proc. R. Soc. London. Ser. A Math. Phys. Sci. 450, 123140 (1995).CrossRefGoogle Scholar
Nicoll, B. C. & Ray, D., Tree Physiol. 16, 891898 (1996).CrossRefGoogle Scholar
Currey, J. D., Bones: Structure and Mechanics (Princeton University Press, 2013).CrossRefGoogle Scholar
Fratzl, P. & Weinkamer, R., Prog. Mater. Sci. 52, 12631334 (2007).CrossRefGoogle Scholar
Weaver, J. C., Milliron, G. W., Miserez, A., Evans-Lutterodt, K., Herrera, S., Gallana, I., Mershon, W. J., Swanson, B., Zavattieri, P., & DiMasi, E., Science (80-. ). 336, 12751280 (2012).CrossRefGoogle Scholar
Patek, S. N. & Caldwell, R. L., J. Exp. Biol. 208, 36553664 (2005).CrossRefGoogle Scholar
Cronin, T. W., Marshall, N. J., Quinn, C. A., & King, C. A., Vision Res. 34, 14431452 (1994).CrossRefGoogle Scholar
Amini, S., Tadayon, M., Idapalapati, S., & Miserez, A., Nat. Mater. 14, 943 (2015).CrossRefGoogle Scholar
Sahay, R., Teo, C. J., & Chew, Y. T., J. Fluid Mech. 735, 150175 (2013).CrossRefGoogle Scholar
Agarwal, K., Zhou, Y., Ali, A., Parveen, H., Radchenko, I., Baji, A., & Budiman, A. S., Adv. Mater. Sci. Eng. 2018, 1–9 (2018).Google Scholar
Amini, S., Masic, A., Bertinetti, L., Teguh, J. S., Herrin, J. S., Zhu, X., Su, H., & Miserez, A., Nat. Commun. 5, 3187 (2014).CrossRefGoogle Scholar
Gu, G. X., Chen, C.-T., Richmond, D. J., & Buehler, M. J., Mater. Horizons 5, 939945 (2018).CrossRefGoogle Scholar
Sakhavand, N. & Shahsavari, R., Nat. Commun. 6, 6523 (2015).CrossRefGoogle Scholar
Chen, B., Peng, X., Cai, C., Niu, H., & Wu, X., Mater. Sci. Eng. A 423, 237242 (2006).CrossRefGoogle Scholar
Cheng, L., Thomas, A., Glancey, J. L., & Karlsson, A. M., Compos. Part A Appl. Sci. Manuf. 42, 211220 (2011).CrossRefGoogle Scholar
Ginzburg, D., Pinto, F., Iervolino, O., & Meo, M., Compos. Struct. 161, 187203 (2017).CrossRefGoogle Scholar
Apichattrabrut, T. & Ravi-Chandar, K., Mech. Adv. Mater. Struct. 13, 6176 (2006).CrossRefGoogle Scholar
Ngern, N. H., Shang, J. S., & Tan, V. B., Impact Performance Of Biomimetic Helicoidal Composite Plates. 10th Int. Conf. Compos. Sci. Technol. (2015), pp. 19.Google Scholar
Liu, J. L., Lee, H. P., & Tan, V. B. C., Compos. Sci. Technol. 165, 282289 (2018).CrossRefGoogle Scholar
Shang, J. S., Ngern, N. H. H., & Tan, V. B. C., Compos. Sci. Technol. 128, 222232 (2016).CrossRefGoogle Scholar
Pinto, F., Iervolino, O., Scarselli, G., Ginzburg, D., & Meo, M., Bioinspired twisted composites based on Bouligand structures. Bioinspiration, Biomimetics, Bioreplication 2016 (International Society for Optics and Photonics, 2016), p. 97970E.Google Scholar
Grunenfelder, L. K., Suksangpanya, N., Salinas, C., Milliron, G., Yaraghi, N., Herrera, S., Evans-Lutterodt, K., Nutt, S. R., Zavattieri, P., & Kisailus, D., Acta Biomater. 10, 39974008 (2014).CrossRefGoogle Scholar
de Obaldia, E. E., Jeong, C., Grunenfelder, L. K., Kisailus, D., & Zavattieri, P., J. Mech. Behav. Biomed. Mater. 48, 7085 (2015).CrossRefGoogle Scholar
Dimas, L. S. & Buehler, M. J., Bioinspir. Biomim. 7, 36024 (2012).CrossRefGoogle Scholar
Gu, G. X., Takaffoli, M., Hsieh, A. J., & Buehler, M. J., Extrem. Mech. Lett. 9, 317323 (2016).CrossRefGoogle Scholar
Yaraghi, N. A., Guarín‐Zapata, N., Grunenfelder, L. K., Hintsala, E., Bhowmick, S., Hiller, J. M., Betts, M., Principe, E. L., Jung, J., & Sheppard, L., Adv. Mater. 28, 68356844 (2016).CrossRefGoogle Scholar
Suksangpanya, N., Yaraghi, N. A., Pipes, R. B., Kisailus, D., & Zavattieri, P., Int. J. Solids Struct. 150, 83106 (2018).CrossRefGoogle Scholar
Zaheri, A., Fenner, J. S., Russell, B. P., Restrepo, D., Daly, M., Wang, D., Hayashi, C., Meyers, M. A., Zavattieri, P. D., & Espinosa, H. D., Adv. Funct. Mater. 28, 1803073 (2018).CrossRefGoogle Scholar
Ren, L., Zhou, X., Liu, Q., Liang, Y., Song, Z., Zhang, B., & Li, B., J. Mater. Sci. 53, 1427414286 (2018).CrossRefGoogle Scholar
Ribbans, B., Li, Y., & Tan, T., J. Mech. Behav. Biomed. Mater. 56, 5767 (2016).CrossRefGoogle Scholar
Tan, T. & Ribbans, B., Proc. R. Soc. A Math. Phys. Eng. Sci. 473, 20170538 (2017).CrossRefGoogle Scholar
Burek, M. J., Budiman, A. S., Jahed, Z., Tamura, N., Kunz, M., Jin, S., Han, S. M. J., Lee, G., Zamecnik, C., & Tsui, T. Y., Mater. Sci. Eng. A 528, 58225832 (2011).CrossRefGoogle Scholar
Baji, A., Mai, Y., Du, X., & Wong, S., Macromol. Mater. Eng. 297, 209213 (2012).CrossRefGoogle Scholar
Budiman, A. S., Han, S.-M., Li, N., Wei, Q.-M., Dickerson, P., Tamura, N., Kunz, M., & Misra, A., J. Mater. Res. 27, 599611 (2012).CrossRefGoogle Scholar
Budiman, A. S., Illya, G., Handara, V., Caldwell, W. A., Bonelli, C., Kunz, M., Tamura, N., & Verstraeten, D., Sol. Energy Mater. Sol. Cells 130, 303308 (2014).CrossRefGoogle Scholar
Liu, J., Lu, X., & Wu, C., Membranes (Basel). 3, 389405 (2013).CrossRefGoogle Scholar
Mu, C., Su, Y., Sun, M., Chen, W., & Jiang, Z., J. Memb. Sci. 361, 1521 (2010).CrossRefGoogle Scholar
Chang, H.-H., Chang, L.-K., Yang, C.-D., Lin, D.-J., & Cheng, L.-P., Polymer (Guildf). 115, 164175 (2017).CrossRefGoogle Scholar
Zhang, M., Zhang, A.-Q., Zhu, B.-K., Du, C.-H., & Xu, Y.-Y., J. Memb. Sci. 319, 169175 (2008).CrossRefGoogle Scholar
Wang, B., Ji, J., & Li, K., Nat. Commun. 7, 12804 (2016).CrossRefGoogle Scholar
Borhani, S., Ravandi, S., Morshed, M., Almassi, S., Salehi, A., & Etemad, G., Evaluation of optimal performance of activated carbon filter media coated with PAN nanofibers. Proc. - Int. Fiber Conf. 2006 Extrem. Aesthetic Text. IFC 2006 (2006).Google Scholar
Cheng, L., Wang, L., & Karlsson, A. M., J. Mater. Res. 24, 32533267 (2009).CrossRefGoogle Scholar
Zorzetto, L. & Ruffoni, D., Adv. Funct. Mater. 29, 1805888 (2019).CrossRefGoogle Scholar