Skip to main content Accessibility help
×
Home

Bacterial Cellulose Produced by Gluconacetobacter xylinus Culture Using Complex Carbon Sources for Biomedical Applications

  • Mayra Elizabeth Garcia-Sanchez (a1), Ines Jimenez Palomar (a2), Yolanda Gonzalez-Garcia (a3) and Jorge R. Robledo-Ortiz (a3)

Abstract

Tissue engineering scaffolding is the external media or structure in which cell growth, migration and reproduction is enabled in order to stimulate tissue regeneration. In order to promote tissue regeneration, scaffolding materials are required to have certain properties such as biocompatibility, adequate mechanical properties and surface topographical features in order to provide specific biological signals to promote cell attachment and proliferation [1].

Cellulose is the most abundant, inexpensive and readily available carbohydrate polymer in the world and it is traditionally extracted from plants or their wastes [2]. Although the plant itself is the major contributor of cellulose, various types of bacteria are able to produce cellulose and it is termed bacterial cellulose [3]. Bacterial cellulose is a well suited scaffold for tissue regeneration due to its biocompatibility, mechanical properties and its ability to be combined with other structures such calcium phosphates [4], which can create composites with intrinsic properties that meet the requirements of the different tissues of the human body [5].

Through additive manufacturing, highly complex structures can be created which are similar to those found in nature. This work will explore the different ways to produce biomimetic structures for tissue engineering applications through the combination of bacterial cellulose and additive manufacturing producing complex structures of a highly a biocompatible material for a range of different biomedical applications [6]. In addition to the manufacturing and processing techniques, the use of mango (juice/peel) as a complex carbon source for the production of bacterial cellulose was investigated.

Copyright

Corresponding author

References

Hide All
1. Helenius, Gisela, Bäckdahl, Henrik, Bodin, Aase, Nannmark, Ulf, Gatenholm, Paul, and Risberg, Bo. Journal of Biomedical Materials Research Part A 76, no. 2 (2006).
2. Esa, Faezah, Masrinda Tasirin, Siti, and Abd Rahman, Norliza. Agriculture and Agricultural Science Procedia 2 (2014).
3. Jozala, Angela Faustino, Aparecida Nedel Pértile, Renata, Alves dos Santos, Carolina, de Carvalho Santos-Ebinuma, Valéria, Martins Seckler, Marcelo, Miguel Gama, Francisco, and Pessoa, Adalberto Jr. Applied microbiology and biotechnology 99, no. 3 (2015).
4. Luo, Honglin, Xiong, Guangyao, Zhang, Chen, Li, Deying, Zhu, Yong, Guo, Ruisong, and Wan, Yizao. Materials Science and Engineering: C 49 (2015).
5. Petersen, Nathan, and Gatenholm, Paul. Applied microbiology and biotechnology 91, no. 5 (2011).
6. Markstedt, Kajsa, Mantas, Athanasios, Tournier, Ivan, Ávila, Héctor Martínez, Hägg, Daniel, and Gatenholm, Paul. Biomacromolecules 16, no. 5 (2015).
7. Yamada, Yuzo, Yukphan, Pattaraporn, Thi Lan Vu, Huong, Muramatsu, Yuki, Ochaikul, Duangjai, Tanasupawat, Somboon, and Nakagawa, Yasuyoshi. The Journal of general and applied microbiology 58, no. 5 (2012).
8. Cannon, R. E., Ph, D., & Anderson, S. M. Biogenesis of Bacterial Cellulose, 435447(1991).
9. Klemm, D., Schumann, D., Udhardt, U., & Marsch, , Progress in Polymer Science, 26(9), 15611603 (2001).
10. Vandamme, E. J., De Baets, S., Vanbaelen, a., Joris, K., & De Wulf, P. Polymer Degradation and Stability, 59(1–3), 9399 (1998).
11. Nimeskern, Luc, Ávila, Héctor Martínez, Sundberg, Johan, Gatenholm, Paul, Müller, Ralph, and Stok, Kathryn S.. Journal of the mechanical behavior of biomedical materials 22 (2013).
12. Grande, Cristian J., Torres, Fernando G., Gomez, Clara M., Troncoso, Omar P., Canet-Ferrer, Josep, and Martínez-Pastor, Juan. Materials Science and Engineering: C 29, no. 4 (2009).
13. Sundberg, Johan, Guccini, Valentina, Håkansson, Karl MO, Salazar-Alvarez, German, Toriz, Guillermo, and Gatenholm, Paul. Polymer 75 (2015).
14. Åkerholm, Margaretha, Hinterstoisser, Barbara, and Salmén, Lennart. Carbohydrate research 339, no. 3 (2004).

Keywords

Bacterial Cellulose Produced by Gluconacetobacter xylinus Culture Using Complex Carbon Sources for Biomedical Applications

  • Mayra Elizabeth Garcia-Sanchez (a1), Ines Jimenez Palomar (a2), Yolanda Gonzalez-Garcia (a3) and Jorge R. Robledo-Ortiz (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed