Skip to main content Accessibility help
×
Home

Approaches to the development of environmentally friendly and resource-saving technology for solar-grade silicon production

  • Sergey M. Karabanov (a1), Dmitriy V. Suvorov (a1), Dmitry Y. Tarabrin (a1), Evgeniy V. Slivkin (a1), Andrey S. Karabanov (a2), Oleg A. Belyakov (a2), Andrey A. Trubitsyn (a1) and Andrey Serebryakov (a1)...

Abstract

Currently, the main material for the production of solar cells is still silicon. More than 70% of the global production of solar cells are silicon based. For solar-grade silicon production the technologies based on the reduction of silicon from organosilicon compounds are mainly used. These technologies are energy-consuming, highly explosive and unsustainable.

The present paper studies the technology of purification of metallurgical-grade silicon by vacuum-thermal and plasma-chemical treatment of silicon melt under electromagnetic stirring using numerical simulation and compares this technology with the existing ones (silane technologies and Elkem Solar silicon (ESS) production process) in terms of energy consumption, environmental safety and the process scalability.

It is shown that the proposed technology is environmentally safe, scalable and has low power consumption. The final product of this technology is multicrystalline silicon, ready for silicon wafer production.

Copyright

Corresponding author

References

Hide All
[1]Ceccaroli, B., Ovrelid, E. and Pizzini, S., Solar Silicon Processes: Technologies, Challenges, and Opportunities , (CRC Press Tayler & Francis group, 2016), p. 258.
[2]Ramos, W.O., Lindholm, F.D., Ramachandran, P.A., Rodriguez, A. and del Canizo, C., Deposition reactors for solar grade silicon: A comparative thermal analysis of a Siemens reactor and a fluidized bed reactor, Netherlands: N. p., 2015.
[3]Braga, A.F.B., Moreira, S.P., Zampieri, P.R., Bacchin, J.M.G. and Mei, P.R., Sol. Energy Mater. Sol. Cells 92, 418-424 (2008).
[4]Delannoy, Y., J. Cryst. Growth 360, 61-67 (2012).
[5]Lee, W., Yoon, W. and Park, C., J. Cryst. Growth 312, 146-148 (2009).
[6]Zheng, S.S., Chen, W.H., Cai, J, Li, J.T., Chen, C. and Luo, X.T., Metallurgical and Materials Transactions B 41, 1268 (2010).
[7]Safarian, J. and Tangstad, M.. Metallurgical and Materials Transactions B 43(6), 1427-1445 (2012).
[8]Dong, W., Wang, Q., Peng, Xu, Tan, Yi and Jiang, Da C., Materials Science Forum 675-677, 45-48 (2011).
[9]Nakamura, N., Baba, H., Sakaguchi, Y., Hiwasa, S. and Kato, Y., J. Japan Inst. Met. 67, 583 (2003).
[10]Alemany, C., Trassy, C, Pateyron, Bernard, Li, K.-I. and Delannoy, Y., Sol. Energy Mater. Sol. Cells 72, 41 (2002).
[11]Karabanov, S.M., Suvorov, D.V., Tarabrin, D.Y., Slivkin, E.V., Korotchenko, V.A., Vlasov, A.N., Belyakov, O.A., Karabanov, A.S. and Dshkhunyan, V.L., Study of interaction of a plasma jet with the silicon melt surface under the conditions of its high turbulence, 2017 EEEIC / I&CPS Europe, Milan, 2017, pp. 377-381.
[12]Karabanov, S. M., Yasevich, V. I., Suvorov, D. V. and Karabanov, A.S., Mathematical modeling and experimental research of the method of plasma chemical purification of metallurgical- grade silicon, 2016 EEEIC, Florence, 2016, pp. 1-5.
[13]Li, P., Ren, S., Jiang, D., Li, J., Zhang, L. and Tan, Y., J. Cryst. Growth 437, 14-19 (2016).
[14]Kudla, Ch., Blumenau, A.T., Bullesfeld, F., Dropka, N., Frank-Rotsch, Ch., Kiessling, F., Klein, O., Lange, P., Miller, W., Rehse, U., Sahr, U., Schellhorn, M., Weidemann, G., Ziem, M., Bethin, G., Fornari, R., Muller, M., Sprekels, J., Trautmann, V. and Rudolph, P., J. Cryst. Growth 365, 54-58 (2013).
[15]Dropka, N., Frank-Rotsch, Ch., Rudolph, P., J. Cryst. Growth 365, 64-72 (2013).
[16]Rudolph, P., J. Cryst. Growth 310, 1298-1306 (2008).
[17]Karabanov, S.M., Suvorov, D.V., Tarabrin, D.Y., Slivkin, E.V., Belyakov, O.A. and Karabanov, A.S., Study of Electromagnetic Stirring of Silicon Melt by Mathematic Modeling,, 2018 EEEIC /I&CPS Europe, Palermo, 2018, DOI:10.1109/EEEIC.2018.8494593.
[18]Santara, Fatoumata & Delannoy, Yves & Autruffe, Antoine. J. Cryst. Growth 340, 41-46 (2012).
[19]de Wild-Scholten, M.J., Glockner, R., Odden, J.-O., Halvorsen, G. and Tronstad, R., LCA comparison of the Elkem Solar metallurgical route and conventional gas routes to solar silicon, 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, 1-5 September, 2008.
[20]Yu, Q., Liu, L., Li, Z., and Su, P., J. Cryst. Growth 401, 285-290 ( 2016).
[21]Tang, K., Øvrelid, E.J., Tranell, G., Tangstad, M.. Thermochemical and kinetic databases for the solar cell silicon materials, The Twelfth International Ferroalloys Congress. - June 6 - 9, 2010. Helsinki, Finland

Keywords

Approaches to the development of environmentally friendly and resource-saving technology for solar-grade silicon production

  • Sergey M. Karabanov (a1), Dmitriy V. Suvorov (a1), Dmitry Y. Tarabrin (a1), Evgeniy V. Slivkin (a1), Andrey S. Karabanov (a2), Oleg A. Belyakov (a2), Andrey A. Trubitsyn (a1) and Andrey Serebryakov (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed