Skip to main content Accessibility help

Antireflective and Self-Cleaning Properties of SiO2-MgF2/TiO2 Double-Layer Films Prepared by Sol-Gel Method at Low Calcination Temperature

  • Hung-Chou Liao (a1), Sheng-Min Yu (a1), Wen-Ching Sun (a1), Wan-Ying Chou (a1), Shou-Yi Ho (a1), Tzu-Yu Wang (a2), Wei-Jen Lu (a2) and Li-Fang Lu (a2)...


SiO2-MgF2/TiO2 double-layer films with antireflective, self-cleaning and adherent properties were prepared by spin-coating SiO2-MgF2 and TiO2 sol on glass substrate successively and subsequently being calcined at 250°C. The optical and structural properties of films have been investigated by visible spectrophotometer and field emission scanning electron microscope, respectively. At the same time, self-cleaning property generated from superhydrophilicity and photocatalysis was obtained. The results indicated that the as-prepared SiO2-MgF2/TiO2 double-layer films show a maximum increase in transmittance near 520 nm wavelength of 2.8% and photocatalytic property with the R value of 4.7(JIS R 1703–2).It has been demonstrated that high transmittance, self-cleaning and adherent composite has been obtained by a simple sol–gel route presenting good potential to be applied on photovoltaics systems.


Corresponding author


Hide All
1. Lien, S. Y., Wuu, D. S., Yeh, W. C., and Liu, J. C., Sol. EnergyMater. Sol. Cells 90, 2710 (2006).
2. Morales, A., Spanish Patent No.P000102382, (2005).
3. Hammaberg, E., and Roos, A., Thin Solid Films 442, 222 (2000).
4. Chabas, A., Lombardo, T., Cachier, H., Pertuisot, M. H., Oikonomou, K., Falcone, R., Verita, M., and Geotti-Bianchini, F., Build.Environ.43, 2124 (2008).
5. Vong, M. S. W., and Sermon, P. A., Thin Solid Films 293,185 (1997).
6. Chapter 4: Antireflection coatings made by a sol–gel process. University of Groningen, thesis.
7. Suratwala, T. I., Hanna, M.L., Miller, E.L., Whitman, P.K., Thomas, I.M., Ehrmann, P.R., Maxwell, R.S., and Burnham, A.K., J Non-Cryst Solids 316, 349 (2003).
8. Sto¨ber, W., Fink, A., and Bohn, E., J Colloid Interface Sci 26, 62 (1968).
9. San Vicente, G., Bayón, R., Germán, N., and Morales, A., Thin Solid Films 517, 3157 (2009)
10. Zhao, Z., Zhao, Q., Yu, J., and Liu, B., J.Non-Cryst.Solids 354, 1424 (2008).
11. Bedikyan, L., Zakhariev, S., and Zakharieva, M. J. Chem. Techn. Metall., 48, 555 (2013).
12. Noh, H. N., and Myong, S. Y., Sol. Energy Mater. Sol. Cells 121, 108 (2014).
13. Guldin, S., Kohn, P., Stefik, M., Song, J., Divitini, G., Ecarla, F., Ducati, C., Wiesner, U., and Steiner, U., Nano Lett. 13, 5329 (2013).
14. Klobukowski, E. R., Tenhaeff, W. E., McCamy, J. W., Harris, C. S., and Narula, C. K., J. Mater. Chem. C: Mater. Opt. Elect. Dev. 1, 6188 (2013).
15. Yen, H. J., Tsai, C. L., Wang, P. H., Lin, J. J., and Liou, G. S., RSC Adv. 3, 17048 (2013).
16. Zhang, H., Fan, D., Yu, T., and Wang, C., J. Sol–Gel Sci. Technol. 66, 274 (2013).
17. Li, X., and He, J., ACS Appl. Mater. Interf. 5, 5282 (2013).
18. Ye, L., Zhang, Y., Zhang, X., Hu, T., Ji, R., Ding, B., and Jiang, B., Sol. Energy Mater. Sol. Cells 111, 160 (2013)



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed