Skip to main content Accessibility help

Antimony Sulfide Thin Films Obtained by Chemical Bath Deposition using Tartaric Acid as Complexing Agent

  • J. Escorcia-García (a1), M. Domínguez-Díaz (a2), A. Hernández-Granados (a3) and H. Martínez (a2)


The deposition of uniform, reproducible and compact Sb2S3 thin films were obtained by chemical bath deposition using tartaric acid as a complexing agent. It was found that the thickness of the films increases with the pH of the solution, reaching values of 130 and 170 nm for pH values of 9.5 and 10, respectively. XRD, as well as Raman analysis, showed amorphous Sb2S3 films formed directly from the chemical bath, which crystallized into stibnite after a thermal treatment in N2 with crystallite sizes between 31 and 39 nm. On the other hand, the optical band gap of the Sb2S3 films decreased with an increase in pH, with values of 1.82-2.03 eV for the crystalline ones. An n-type photo-conductivity of 10-6 Ω-1 cm-1 was obtained for the heated films. The evaluation of these films for solar cell applications using CdS as the window layer gave a Voc of 656 mV and a Jsc of 2.66 mA/cm2 under AM1.5G radiation.


Corresponding author


Hide All
1.Escorcia-García, J., Nair, M.T.S., and Nair, P.K., Thin Solid Films 569, 2834 (2014).
2.Madelung, O., Data in Science Technology: Semiconductors Other Than Group IV Elements and III-V Compounds (Springer-Verlag, Berlin, 1992) p. 64.
3.González-Lúa, R., Escorcia García, J., Pérez-Martínez, D., Nair, M.T.S., Campos, J., and Nair, P.K., ECS J. Solid State Sci. Technol. 4, Q3Q16 (2015).
4.Qiao, S., Liu, J., Li, Z.Q., Wang, S.F., and Fu, G.S., Opt. Express 25, 1958319594 (2017).
5.Ma, X., Zhong, J., Li, M., Chen, J., Zhang, Y., Wu, S., Gao, X., Lu, X., Liu, J.-M., and Liu, H., Solar Energy 133, 103110 (2016).
6.Moon, S.-J., Itzhaik, Y., Yum, J.-H., Zakeeruddin, S.M., Hodes, G., and Grätzel, M., J. Phys. Chem. Lett. 1, 15241527 (2010).
7.Zheng, L., Jiang, K., Huang, J., Zhang, Y., Bao, B., Zhao, X., Wang, H., Guan, B., Yang, L.M., and Song, Y., J. Mater. Chem. A 5, 47914796 (2017).
8.Dargat, A., Mencaragliat, D., Longeaud, C., Savenije, T.J., O’Regan, B., Bourdais, S., Muto, T., Delatouche, B., and Dennler, G., J. Phys. Chem. C 117, 2052520530 (2013).
9.Messina, S., Nair, M.T.S., and Nair, P.K., Thin Solid Films 515, 5777 (2007).
10.Mane, R.S. and Lokhande, C.D., Mater. Chem. Phys. 78, 385392 (2002).
11.Cheng, J., Fan, D.B., Wang, H., Liu, B.W., Zhang, Y.C., and Yan, H., Semicond. Sci. Technol. 18, 656679 (2003).
12.Gadakh, S.R. and Bhosale, C.H., Mater. Chem. Phys. 78, 367 (2002).
13.Iyer, R. K., Deshpande, S.G., and Rao, G.S., J. Inorg. Nucl. Chem. 34, 33513356 (1972).
14.Mane, R.S. and Lokhande, C.D., Mater. Chem. Phys. 82, 347 (2003).
15.Avilez-Garcia, R.G., Meza-Avendaño, C.A., Pal, M., Paraguay, F., and Mathews, N.R., Mater. Sci. Semicond. Process. 44, 91100 (2016).
16.Sotelo-Marquina, R.G., Sanchez, T.G., Mathews, N.R., and Mathew, X., Mater. Res. Bull. 90, 285294 (2017).
17.Parize, R., Katerski, A., Gromyko, I., Repenne, L., Roussel, H., Kärber, E., Appert, E., Krunks, M., and Consonni, V., J. Phys. Chem. C 121, 96729680 (2017).
18.Cheng, Y.C., Jin, C.Q., Gao, F., Wu, X.L., Zhong, W., Li, S.H., and Chu, P.K., J. Appl. Phys. 106, 123505 (2009).
19.Schröder, D.K., Semiconductor Metal and Device Characterization (Wiley, New York, 1990) p. 597.
20.Medina-Montes, M.I., Montiel-González, Z., Mathews, N.R., and Mathew, X., J. Phys. Chem. Solids 111, 182189 (2017).
21.Hädrich, M., Kraft, C., Metzner, H., Reislöhner, U., Löffler, C., and Witthuhn, W., Phys. Status Solidi C 6, 1257 (2009).



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed