Skip to main content Accessibility help
×
Home

Article contents

Systematic Search for Lithium Ion Conducting Compounds by Screening of Compositions Combined with Atomistic Simulation

Published online by Cambridge University Press:  05 January 2017

Daniel Mutter
Affiliation:
Freiburg Materials Research Center (FMF), Albert-Ludwigs-Universität Freiburg, Stefan- Meier-Str. 21, 79104 Freiburg, Germany Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstr. 11, 79108 Freiburg, Germany
Daniel F. Urban
Affiliation:
Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstr. 11, 79108 Freiburg, Germany
Christian Elsässer
Affiliation:
Freiburg Materials Research Center (FMF), Albert-Ludwigs-Universität Freiburg, Stefan- Meier-Str. 21, 79104 Freiburg, Germany Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstr. 11, 79108 Freiburg, Germany
Corresponding
Get access

Abstract

Replacing liquid by solid state electrolytes has the potential to significantly improve current Li ion batteries concerning performance and safety. The material class NZP, based on the compound NaZr2(PO4)3, exhibits a structural framework suitable for ionic conduction. In this work, a systematic compositional screening and simulation approach, combining classical molecular-dynamics, first-principles calculations, and structural analysis was applied, with which a set of new Li ion conducting NZP compounds could be identified.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Knauth, P., Solid State Ionics 180, 911 (2009).CrossRef
Takada, K., Acta Mater. 61, 759 (2013).CrossRef
Hagman, L.-O. and Kierkegaard, P., Acta Chem. Scand. 22, 1822 (1968).CrossRef
Arbi, K., Hoelzel, M., Kuhn, A., García-Alvarado, F., and Sanz, J., Inorg. Chem. 52, 9290 (2013).CrossRef
Duluard, S., Paillassa, A., Puech, L., Vinatier, P., Turq, V., Rozier, P., Lenormand, P., Taberna, P.L., Simon, P., and Ansart, F., J. Eur. Ceram. Soc. 33, 1145 (2013).CrossRef
Pet’kov, V.I. and Orlova, A.I., Inorg. Mater. 39, 1013 (2003).CrossRef
Lang, B., Ziebarth, B., and Elsässer, C., Chem. Mater. 27, 5040 (2015).CrossRef
Adams, S. and Rao, R.P., Phys. Status Solidi A 208, 1746 (2011).CrossRef
Adams, S. and Rao, R.P., J. Mater. Chem. 22, 1426 (2012).CrossRef
Adams, S., J. Solid State Electrochem. 14, 1787 (2010).CrossRef
Adams, S., J. Power Sources 159, 200 (2006).CrossRef
Brown, I.D., in Bond Valences, edited by Brown, I.D. and Poeppelmeier, K.R. (Springer, Belin, Heidelberg, 2014), pp. 5455.Google Scholar
Gale, J.D. and Rohl, a L., Mol. Simul. 29, 291 (2003).CrossRef
García-Muñoz, J.L. and Rodríguez-Carvajal, J., J. Solid State Chem. 115, 324 (1995).CrossRef
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., and Wentzcovitch, R.M., J. Phys. Condens. Matter 21, 395502 (2009).CrossRef
Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).CrossRef
Garrity, K.F., Bennett, J.W., Rabe, K.M., and Vanderbilt, D., Comput. Mater. Sci. 81, 446 (2014).CrossRef
Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 78, 1396 (1997).CrossRef
Monkhorst, H. and Pack, J., Phys. Rev. B 13, 5188 (1976).CrossRef
Shannon, R.D., Acta Crystallogr. Sect. A 32, 751 (1976).CrossRef
Monchak, M., Hupfer, T., Senyshyn, A., Boysen, H., Chernyshov, D., Hansen, T., Schell, K.G., Bucharsky, E.C., Hoffmann, M.J., and Ehrenberg, H., Inorg. Chem. 55, 2941 (2016).CrossRef

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 24 *
View data table for this chart

* Views captured on Cambridge Core between 05th January 2017 - 28th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-sztd2 Total loading time: 0.598 Render date: 2021-01-28T03:40:35.087Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Systematic Search for Lithium Ion Conducting Compounds by Screening of Compositions Combined with Atomistic Simulation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Systematic Search for Lithium Ion Conducting Compounds by Screening of Compositions Combined with Atomistic Simulation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Systematic Search for Lithium Ion Conducting Compounds by Screening of Compositions Combined with Atomistic Simulation
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *